Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210711230> ?p ?o ?g. }
- W3210711230 endingPage "31" @default.
- W3210711230 startingPage "19" @default.
- W3210711230 abstract "Computational prediction of drug-target interactions (DTIs) is of particular importance in the process of drug repositioning because of its efficiency in selecting potential candidates for DTIs. A variety of computational methods for predicting DTIs have been proposed over the past decade. Our interest is which methods or techniques are the most advantageous for increasing prediction accuracy. This article provides a comprehensive overview of network-based, machine learning, and integrated DTI prediction methods. The network-based methods handle a DTI network along with drug and target similarities in a matrix form and apply graph-theoretic algorithms to identify new DTIs. Machine learning methods use known DTIs and the features of drugs and target proteins as training data to build a predictive model. Integrated methods combine these two techniques. We assessed the prediction performance of the selected state-of-the-art methods using two different benchmark datasets. Our experimental results demonstrate that the integrated methods outperform the others in general. Some previous methods showed low accuracy on predicting interactions of unknown drugs which do not exist in the training dataset. Combining similarity matrices from multiple features by data fusion was not beneficial in increasing prediction accuracy. Finally, we analyzed future directions for further improvements in DTI predictions." @default.
- W3210711230 created "2021-11-08" @default.
- W3210711230 creator A5013149893 @default.
- W3210711230 creator A5081375923 @default.
- W3210711230 creator A5083535260 @default.
- W3210711230 date "2022-02-01" @default.
- W3210711230 modified "2023-09-26" @default.
- W3210711230 title "Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions" @default.
- W3210711230 cites W1544009106 @default.
- W3210711230 cites W1928552520 @default.
- W3210711230 cites W1971106435 @default.
- W3210711230 cites W1978370150 @default.
- W3210711230 cites W1982545168 @default.
- W3210711230 cites W1984014392 @default.
- W3210711230 cites W1984084871 @default.
- W3210711230 cites W1987219048 @default.
- W3210711230 cites W1995449922 @default.
- W3210711230 cites W2020639753 @default.
- W3210711230 cites W2033591223 @default.
- W3210711230 cites W2062941476 @default.
- W3210711230 cites W2087007556 @default.
- W3210711230 cites W2099364528 @default.
- W3210711230 cites W2099754222 @default.
- W3210711230 cites W2106029302 @default.
- W3210711230 cites W2109991441 @default.
- W3210711230 cites W2126671570 @default.
- W3210711230 cites W2127249498 @default.
- W3210711230 cites W2127587566 @default.
- W3210711230 cites W2135007932 @default.
- W3210711230 cites W2139516171 @default.
- W3210711230 cites W2139736926 @default.
- W3210711230 cites W2141914340 @default.
- W3210711230 cites W2145578524 @default.
- W3210711230 cites W2153838454 @default.
- W3210711230 cites W2154896031 @default.
- W3210711230 cites W2161607603 @default.
- W3210711230 cites W2167212630 @default.
- W3210711230 cites W2204695023 @default.
- W3210711230 cites W2256119113 @default.
- W3210711230 cites W2256553158 @default.
- W3210711230 cites W2302413701 @default.
- W3210711230 cites W2339926834 @default.
- W3210711230 cites W2412446857 @default.
- W3210711230 cites W2559588208 @default.
- W3210711230 cites W2562753754 @default.
- W3210711230 cites W2563206593 @default.
- W3210711230 cites W2568498246 @default.
- W3210711230 cites W2592742128 @default.
- W3210711230 cites W2607497028 @default.
- W3210711230 cites W2608761935 @default.
- W3210711230 cites W2623060321 @default.
- W3210711230 cites W2751900761 @default.
- W3210711230 cites W2753953057 @default.
- W3210711230 cites W2767891136 @default.
- W3210711230 cites W2770261575 @default.
- W3210711230 cites W2793951981 @default.
- W3210711230 cites W2887766329 @default.
- W3210711230 cites W2889321024 @default.
- W3210711230 cites W2892573831 @default.
- W3210711230 cites W2896002881 @default.
- W3210711230 cites W2950595506 @default.
- W3210711230 cites W2963722686 @default.
- W3210711230 cites W2971801381 @default.
- W3210711230 cites W3004930794 @default.
- W3210711230 cites W3039465695 @default.
- W3210711230 cites W3085429933 @default.
- W3210711230 cites W3088070507 @default.
- W3210711230 cites W3134958209 @default.
- W3210711230 doi "https://doi.org/10.1016/j.ymeth.2021.10.007" @default.
- W3210711230 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34737033" @default.
- W3210711230 hasPublicationYear "2022" @default.
- W3210711230 type Work @default.
- W3210711230 sameAs 3210711230 @default.
- W3210711230 citedByCount "9" @default.
- W3210711230 countsByYear W32107112302021 @default.
- W3210711230 countsByYear W32107112302022 @default.
- W3210711230 countsByYear W32107112302023 @default.
- W3210711230 crossrefType "journal-article" @default.
- W3210711230 hasAuthorship W3210711230A5013149893 @default.
- W3210711230 hasAuthorship W3210711230A5081375923 @default.
- W3210711230 hasAuthorship W3210711230A5083535260 @default.
- W3210711230 hasConcept C103278499 @default.
- W3210711230 hasConcept C115961682 @default.
- W3210711230 hasConcept C119857082 @default.
- W3210711230 hasConcept C124101348 @default.
- W3210711230 hasConcept C132525143 @default.
- W3210711230 hasConcept C13280743 @default.
- W3210711230 hasConcept C154945302 @default.
- W3210711230 hasConcept C185798385 @default.
- W3210711230 hasConcept C205649164 @default.
- W3210711230 hasConcept C2989108626 @default.
- W3210711230 hasConcept C41008148 @default.
- W3210711230 hasConcept C50644808 @default.
- W3210711230 hasConcept C71924100 @default.
- W3210711230 hasConcept C80444323 @default.
- W3210711230 hasConcept C98274493 @default.
- W3210711230 hasConceptScore W3210711230C103278499 @default.
- W3210711230 hasConceptScore W3210711230C115961682 @default.