Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210767309> ?p ?o ?g. }
- W3210767309 endingPage "375" @default.
- W3210767309 startingPage "369" @default.
- W3210767309 abstract "Damage control resuscitation has become the standard of care in military and civilian trauma. Early identification of blood product requirements may aid in optimizing the clinical decision-making process while improving trauma related outcomes. This study aimed to assess and compare multiple machine learning models for predicting patients at highest risk for massive transfusion on the battlefield.Supervised machine learning approaches using logistic regression, support vector machine, neural network, and random forest techniques were used to create predictive models for massive transfusion using standard prehospital and arrival data points from the Department of Defense Trauma Registry, 2008-2016. Seventy percent of the population was used for model development and performance was validated using the remaining 30%. Models were tested for accuracy and compared by standard performance statistics.A total of 22,158 patients (97% male, 58% penetrating injury, median age 25-29 y/o, average Injury Severity Score 9, with an overall mortality of 3%) were included in the analysis. Massive transfusion was required by 7.4% of patients. Overall accuracy was found to be above 90% in all models tested. Following cross validation and model training, the random forest model outperformed the alternatively tested models for precision, recall, and area under the curve.Machine learning techniques may allow for more optimal and rapid identification of combat trauma patients at highest risk for massive transfusion. These powerful approaches may uncover novel correlations and help improve triage, activation of massive transfusion resources, and trauma-related outcomes. Further research seeking to optimize and apply these algorithms to trauma-centered research should be pursued." @default.
- W3210767309 created "2021-11-08" @default.
- W3210767309 creator A5000786337 @default.
- W3210767309 creator A5008752761 @default.
- W3210767309 creator A5017087255 @default.
- W3210767309 creator A5026538827 @default.
- W3210767309 creator A5028836387 @default.
- W3210767309 creator A5058907135 @default.
- W3210767309 creator A5063715106 @default.
- W3210767309 creator A5069059996 @default.
- W3210767309 creator A5090119843 @default.
- W3210767309 date "2022-02-01" @default.
- W3210767309 modified "2023-10-14" @default.
- W3210767309 title "Machine Learning for Military Trauma: Novel Massive Transfusion Predictive Models in Combat Zones" @default.
- W3210767309 cites W1986664120 @default.
- W3210767309 cites W2010277284 @default.
- W3210767309 cites W2015068956 @default.
- W3210767309 cites W2018261169 @default.
- W3210767309 cites W2042109117 @default.
- W3210767309 cites W2079259779 @default.
- W3210767309 cites W2085326972 @default.
- W3210767309 cites W2108856858 @default.
- W3210767309 cites W2127379488 @default.
- W3210767309 cites W2133226878 @default.
- W3210767309 cites W2154986869 @default.
- W3210767309 cites W2177870565 @default.
- W3210767309 cites W2755603902 @default.
- W3210767309 cites W2791249689 @default.
- W3210767309 cites W2800788706 @default.
- W3210767309 cites W2803758195 @default.
- W3210767309 cites W2936573766 @default.
- W3210767309 cites W2945976633 @default.
- W3210767309 cites W2968884332 @default.
- W3210767309 cites W3014009038 @default.
- W3210767309 cites W3043226692 @default.
- W3210767309 doi "https://doi.org/10.1016/j.jss.2021.09.017" @default.
- W3210767309 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34736129" @default.
- W3210767309 hasPublicationYear "2022" @default.
- W3210767309 type Work @default.
- W3210767309 sameAs 3210767309 @default.
- W3210767309 citedByCount "6" @default.
- W3210767309 countsByYear W32107673092022 @default.
- W3210767309 countsByYear W32107673092023 @default.
- W3210767309 crossrefType "journal-article" @default.
- W3210767309 hasAuthorship W3210767309A5000786337 @default.
- W3210767309 hasAuthorship W3210767309A5008752761 @default.
- W3210767309 hasAuthorship W3210767309A5017087255 @default.
- W3210767309 hasAuthorship W3210767309A5026538827 @default.
- W3210767309 hasAuthorship W3210767309A5028836387 @default.
- W3210767309 hasAuthorship W3210767309A5058907135 @default.
- W3210767309 hasAuthorship W3210767309A5063715106 @default.
- W3210767309 hasAuthorship W3210767309A5069059996 @default.
- W3210767309 hasAuthorship W3210767309A5090119843 @default.
- W3210767309 hasConcept C118552586 @default.
- W3210767309 hasConcept C119857082 @default.
- W3210767309 hasConcept C151956035 @default.
- W3210767309 hasConcept C154945302 @default.
- W3210767309 hasConcept C169258074 @default.
- W3210767309 hasConcept C190385971 @default.
- W3210767309 hasConcept C194828623 @default.
- W3210767309 hasConcept C195244886 @default.
- W3210767309 hasConcept C2777120189 @default.
- W3210767309 hasConcept C2777175280 @default.
- W3210767309 hasConcept C2777914111 @default.
- W3210767309 hasConcept C2779669469 @default.
- W3210767309 hasConcept C2780724011 @default.
- W3210767309 hasConcept C2908647359 @default.
- W3210767309 hasConcept C3017944768 @default.
- W3210767309 hasConcept C41008148 @default.
- W3210767309 hasConcept C545542383 @default.
- W3210767309 hasConcept C71924100 @default.
- W3210767309 hasConcept C84525736 @default.
- W3210767309 hasConcept C85004164 @default.
- W3210767309 hasConcept C95457728 @default.
- W3210767309 hasConcept C99454951 @default.
- W3210767309 hasConceptScore W3210767309C118552586 @default.
- W3210767309 hasConceptScore W3210767309C119857082 @default.
- W3210767309 hasConceptScore W3210767309C151956035 @default.
- W3210767309 hasConceptScore W3210767309C154945302 @default.
- W3210767309 hasConceptScore W3210767309C169258074 @default.
- W3210767309 hasConceptScore W3210767309C190385971 @default.
- W3210767309 hasConceptScore W3210767309C194828623 @default.
- W3210767309 hasConceptScore W3210767309C195244886 @default.
- W3210767309 hasConceptScore W3210767309C2777120189 @default.
- W3210767309 hasConceptScore W3210767309C2777175280 @default.
- W3210767309 hasConceptScore W3210767309C2777914111 @default.
- W3210767309 hasConceptScore W3210767309C2779669469 @default.
- W3210767309 hasConceptScore W3210767309C2780724011 @default.
- W3210767309 hasConceptScore W3210767309C2908647359 @default.
- W3210767309 hasConceptScore W3210767309C3017944768 @default.
- W3210767309 hasConceptScore W3210767309C41008148 @default.
- W3210767309 hasConceptScore W3210767309C545542383 @default.
- W3210767309 hasConceptScore W3210767309C71924100 @default.
- W3210767309 hasConceptScore W3210767309C84525736 @default.
- W3210767309 hasConceptScore W3210767309C85004164 @default.
- W3210767309 hasConceptScore W3210767309C95457728 @default.
- W3210767309 hasConceptScore W3210767309C99454951 @default.
- W3210767309 hasLocation W32107673091 @default.