Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210813904> ?p ?o ?g. }
- W3210813904 endingPage "103488" @default.
- W3210813904 startingPage "103488" @default.
- W3210813904 abstract "Fast assimilation of monitoring data to update forecasts of pressure buildup and carbon dioxide (CO2) plume migration under geologic uncertainties is a challenging problem in geologic carbon storage. The high computational cost of data assimilation with a high-dimensional parameter space impedes fast decision-making for commercial-scale reservoir management. We propose to leverage physical understandings of porous medium flow behavior with deep learning techniques to develop a fast data assimilation-reservoir response forecasting workflow. Applying an Ensemble Smoother Multiple Data Assimilation (ES-MDA) framework, the workflow updates geologic properties and predicts reservoir performance with quantified uncertainty from pressure history and CO2 plumes interpreted through seismic inversion. As the most computationally expensive component in such a workflow is reservoir simulation, we developed surrogate models to predict dynamic pressure and CO2 plume extents under multi-well injection. The surrogate models employ deep convolutional neural networks, specifically, a wide residual network and a residual U-Net. The workflow is validated against a flat three-dimensional reservoir model representative of a clastic shelf depositional environment. Intelligent treatments are applied to bridge between quantities in a true-3D reservoir model and those in a single-layer reservoir model. The workflow can complete history matching and reservoir forecasting with uncertainty quantification in less than one hour on a mainstream personal workstation." @default.
- W3210813904 created "2021-11-08" @default.
- W3210813904 creator A5018430683 @default.
- W3210813904 creator A5026684786 @default.
- W3210813904 creator A5036781407 @default.
- W3210813904 creator A5038173995 @default.
- W3210813904 creator A5045406804 @default.
- W3210813904 creator A5047662931 @default.
- W3210813904 creator A5050861920 @default.
- W3210813904 creator A5057050090 @default.
- W3210813904 creator A5060905917 @default.
- W3210813904 date "2021-12-01" @default.
- W3210813904 modified "2023-10-01" @default.
- W3210813904 title "A deep learning-accelerated data assimilation and forecasting workflow for commercial-scale geologic carbon storage" @default.
- W3210813904 cites W1985370029 @default.
- W3210813904 cites W1985762111 @default.
- W3210813904 cites W1989411673 @default.
- W3210813904 cites W1999913952 @default.
- W3210813904 cites W2004124997 @default.
- W3210813904 cites W2018353504 @default.
- W3210813904 cites W2024330397 @default.
- W3210813904 cites W2030064349 @default.
- W3210813904 cites W2060085670 @default.
- W3210813904 cites W2063244626 @default.
- W3210813904 cites W2064572976 @default.
- W3210813904 cites W2078327207 @default.
- W3210813904 cites W2104723734 @default.
- W3210813904 cites W2129288307 @default.
- W3210813904 cites W2130023313 @default.
- W3210813904 cites W2133665775 @default.
- W3210813904 cites W2138839934 @default.
- W3210813904 cites W2173126837 @default.
- W3210813904 cites W2327911179 @default.
- W3210813904 cites W2501447055 @default.
- W3210813904 cites W2591805839 @default.
- W3210813904 cites W2734580220 @default.
- W3210813904 cites W2762902720 @default.
- W3210813904 cites W2776101365 @default.
- W3210813904 cites W2784733489 @default.
- W3210813904 cites W2796092147 @default.
- W3210813904 cites W2801462972 @default.
- W3210813904 cites W2911181190 @default.
- W3210813904 cites W2949265864 @default.
- W3210813904 cites W2962677588 @default.
- W3210813904 cites W2963162215 @default.
- W3210813904 cites W2979624694 @default.
- W3210813904 cites W2981461641 @default.
- W3210813904 cites W2981785001 @default.
- W3210813904 cites W2990558975 @default.
- W3210813904 cites W2993989165 @default.
- W3210813904 cites W2999802832 @default.
- W3210813904 cites W3011254666 @default.
- W3210813904 cites W3016309349 @default.
- W3210813904 cites W3029050805 @default.
- W3210813904 cites W3039262375 @default.
- W3210813904 cites W3045327624 @default.
- W3210813904 cites W3100968477 @default.
- W3210813904 cites W3117147976 @default.
- W3210813904 cites W3123551284 @default.
- W3210813904 cites W3128950974 @default.
- W3210813904 cites W3171743253 @default.
- W3210813904 cites W3175774835 @default.
- W3210813904 cites W911094397 @default.
- W3210813904 doi "https://doi.org/10.1016/j.ijggc.2021.103488" @default.
- W3210813904 hasPublicationYear "2021" @default.
- W3210813904 type Work @default.
- W3210813904 sameAs 3210813904 @default.
- W3210813904 citedByCount "17" @default.
- W3210813904 countsByYear W32108139042021 @default.
- W3210813904 countsByYear W32108139042022 @default.
- W3210813904 countsByYear W32108139042023 @default.
- W3210813904 crossrefType "journal-article" @default.
- W3210813904 hasAuthorship W3210813904A5018430683 @default.
- W3210813904 hasAuthorship W3210813904A5026684786 @default.
- W3210813904 hasAuthorship W3210813904A5036781407 @default.
- W3210813904 hasAuthorship W3210813904A5038173995 @default.
- W3210813904 hasAuthorship W3210813904A5045406804 @default.
- W3210813904 hasAuthorship W3210813904A5047662931 @default.
- W3210813904 hasAuthorship W3210813904A5050861920 @default.
- W3210813904 hasAuthorship W3210813904A5057050090 @default.
- W3210813904 hasAuthorship W3210813904A5060905917 @default.
- W3210813904 hasBestOaLocation W32108139041 @default.
- W3210813904 hasConcept C11413529 @default.
- W3210813904 hasConcept C121332964 @default.
- W3210813904 hasConcept C127313418 @default.
- W3210813904 hasConcept C14641988 @default.
- W3210813904 hasConcept C153294291 @default.
- W3210813904 hasConcept C155512373 @default.
- W3210813904 hasConcept C177212765 @default.
- W3210813904 hasConcept C24552861 @default.
- W3210813904 hasConcept C2778668878 @default.
- W3210813904 hasConcept C41008148 @default.
- W3210813904 hasConcept C77088390 @default.
- W3210813904 hasConcept C78762247 @default.
- W3210813904 hasConceptScore W3210813904C11413529 @default.
- W3210813904 hasConceptScore W3210813904C121332964 @default.
- W3210813904 hasConceptScore W3210813904C127313418 @default.
- W3210813904 hasConceptScore W3210813904C14641988 @default.