Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210829912> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3210829912 abstract "Pneumonia is commonly seen in several diseases, including Covid-19 that has put countries under lockdown today [1]. Other than antigen rapid test kit (RTK) and reverse transcription-polymerase chain reaction (RT-PCR), an alternative method to detect COVID-19 is through the examination of patients’ chest radiography (CXR). However, the results of manual inspections may be false and the misdiagnosis could lead to fatal consequences such as delayed treatment and death. The manual inspection can be inconsistent, inaccurate and may differ from different individuals due to different perspectives. Often, Covid-19 Xrays are misinterpreted as bacterial pneumonia. With the advancement of technology, this issue can be overcome by developing a Convolutional Neural Network (CNN) model to categorize X-ray of normal, pneumonia-affected and COVID-19 patients via deep learning. In this work, various CNN models (ResNet-50, ResNet-101, Vgg-16, Vgg-19 and SqueezeNet) were trained with the public databases that contain a combination of 1345 viral pneumonia, 1200 COVID-19 in addition to 1341 regular CXR images. The transfer learning method was employed, aided by image augmentation for training and validation of ResNet-50, ResNet-101, Vgg-16 and Vgg-19 architectures. Meanwhile, SqueezeNet was trained from scratch to investigate the importance of transfer learning to the model. The highest training accuracy achieved in this study was 97.38% by the VGG-16 model using a learning rate of 0.01 whereas the highest weighted average accuracy achieved was 94% by the VGG-16 model using a learning rate of 0.01 and the VGG-19 model using a learning rate of 0.001. The reliability and high accuracy of the CNN model would open a new avenue for the diagnosis of Covid-19." @default.
- W3210829912 created "2021-11-08" @default.
- W3210829912 creator A5024420049 @default.
- W3210829912 creator A5041394126 @default.
- W3210829912 date "2021-09-13" @default.
- W3210829912 modified "2023-09-30" @default.
- W3210829912 title "Development Of A Deep Learning Model To Classify X-Ray Of Covid-19, Normal And Pneumonia-Affected Patients" @default.
- W3210829912 cites W2941850176 @default.
- W3210829912 cites W2944472195 @default.
- W3210829912 cites W3013277995 @default.
- W3210829912 cites W3019531985 @default.
- W3210829912 cites W3021085078 @default.
- W3210829912 cites W4300273322 @default.
- W3210829912 doi "https://doi.org/10.1109/icsipa52582.2021.9576804" @default.
- W3210829912 hasPublicationYear "2021" @default.
- W3210829912 type Work @default.
- W3210829912 sameAs 3210829912 @default.
- W3210829912 citedByCount "3" @default.
- W3210829912 countsByYear W32108299122022 @default.
- W3210829912 countsByYear W32108299122023 @default.
- W3210829912 crossrefType "proceedings-article" @default.
- W3210829912 hasAuthorship W3210829912A5024420049 @default.
- W3210829912 hasAuthorship W3210829912A5041394126 @default.
- W3210829912 hasConcept C108583219 @default.
- W3210829912 hasConcept C119857082 @default.
- W3210829912 hasConcept C126322002 @default.
- W3210829912 hasConcept C142724271 @default.
- W3210829912 hasConcept C150899416 @default.
- W3210829912 hasConcept C154945302 @default.
- W3210829912 hasConcept C2777914695 @default.
- W3210829912 hasConcept C2779134260 @default.
- W3210829912 hasConcept C2944601119 @default.
- W3210829912 hasConcept C3007834351 @default.
- W3210829912 hasConcept C3008058167 @default.
- W3210829912 hasConcept C41008148 @default.
- W3210829912 hasConcept C524204448 @default.
- W3210829912 hasConcept C71924100 @default.
- W3210829912 hasConcept C81363708 @default.
- W3210829912 hasConcept C94124525 @default.
- W3210829912 hasConceptScore W3210829912C108583219 @default.
- W3210829912 hasConceptScore W3210829912C119857082 @default.
- W3210829912 hasConceptScore W3210829912C126322002 @default.
- W3210829912 hasConceptScore W3210829912C142724271 @default.
- W3210829912 hasConceptScore W3210829912C150899416 @default.
- W3210829912 hasConceptScore W3210829912C154945302 @default.
- W3210829912 hasConceptScore W3210829912C2777914695 @default.
- W3210829912 hasConceptScore W3210829912C2779134260 @default.
- W3210829912 hasConceptScore W3210829912C2944601119 @default.
- W3210829912 hasConceptScore W3210829912C3007834351 @default.
- W3210829912 hasConceptScore W3210829912C3008058167 @default.
- W3210829912 hasConceptScore W3210829912C41008148 @default.
- W3210829912 hasConceptScore W3210829912C524204448 @default.
- W3210829912 hasConceptScore W3210829912C71924100 @default.
- W3210829912 hasConceptScore W3210829912C81363708 @default.
- W3210829912 hasConceptScore W3210829912C94124525 @default.
- W3210829912 hasLocation W32108299121 @default.
- W3210829912 hasOpenAccess W3210829912 @default.
- W3210829912 hasPrimaryLocation W32108299121 @default.
- W3210829912 hasRelatedWork W3018421652 @default.
- W3210829912 hasRelatedWork W3021430260 @default.
- W3210829912 hasRelatedWork W3091976719 @default.
- W3210829912 hasRelatedWork W3179744494 @default.
- W3210829912 hasRelatedWork W3192840557 @default.
- W3210829912 hasRelatedWork W4220996320 @default.
- W3210829912 hasRelatedWork W4285149559 @default.
- W3210829912 hasRelatedWork W4312200629 @default.
- W3210829912 hasRelatedWork W4321493281 @default.
- W3210829912 hasRelatedWork W4382286161 @default.
- W3210829912 isParatext "false" @default.
- W3210829912 isRetracted "false" @default.
- W3210829912 magId "3210829912" @default.
- W3210829912 workType "article" @default.