Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210913144> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3210913144 abstract "Prompted by recent reports of large errors in noncovalent interaction (NI) energies obtained from many-body perturbation theory (MBPT), we compare the performance of second-order Møller–Plesset MBPT (MP2), spin-scaled MP2, dispersion-corrected semilocal density functional approximations (DFA), and the post-Kohn–Sham random phase approximation (RPA) for predicting binding energies of supramolecular complexes contained in the S66, L7, and S30L benchmarks. All binding energies are extrapolated to the basis set limit, corrected for basis set superposition errors, and compared to reference results of the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better quality. Our results confirm that MP2 severely overestimates binding energies of large complexes, producing relative errors of over 100% for several benchmark compounds. RPA relative errors consistently range between 5-10%, significantly less than reported previously using smaller basis sets, whereas spin-scaled MP2 methods show limitations similar to MP2, albeit less pronounced, and empirically dispersion-corrected DFAs perform almost as well as RPA. Regression analysis reveals a systematic increase of relative MP2 binding energy errors with the system size at a rate of approximately 1‰ per valence electron, whereas the RPA and dispersion-corrected DFA relative errors are virtually independent of the system size. These observations are corroborated by a comparison of computed rotational constants of organic molecules to gas-phase spectroscopy data contained in the ROT34 benchmark. To analyze these results, an asymptotic adiabatic connection symmetry-adapted perturbation theory (AC-SAPT) is developed which uses monomers at full coupling whose ground-state density is constrained to the ground-state density of the complex. Using the fluctuation–dissipation theorem, we obtain a nonperturbative “screened second-order” expression for the dispersion energy in terms of monomer quantities which is exact for non-overlapping subsystems and free of induction terms; a first-order RPA-like approximation to the Hartree, exchange, and correlation kernel recovers the macroscopic Lifshitz limit. The AC-SAPT expansion of the interaction energy is obtained from Taylor expansion of the coupling strength integrand. Explicit expressions for the convergence radius of the AC-SAPT series are derived within RPA and MBPT and numerically evaluated. Whereas the AC-SAPT expansion is always convergent for nondegenerate monomers when RPA is used, it is found to spuriously diverge for second-order MBPT, except for the smallest and least polarizable monomers. The divergence of the AC-SAPT series within MBPT is numerically confirmed within RPA; prior numerical results on the convergence of the SAPT expansion for MBPT methods are revisited and support this conclusion once sufficiently high orders are included. The cause of the failure of MBPT methods for NIs of large systems is missing or incomplete “electrodynamic” screening of the Coulomb interaction due to induced particle–hole pairs between electrons in different monomers, leaving the effective interaction too strong for AC-SAPT to converge. Hence, MBPT cannot be considered reliable for quantitative predictions of NIs, even in moderately polarizable molecules with a few tens of atoms. The failure to accurately account for electrodynamic polarization makes MBPT qualitatively unsuitable for applications such as NIs of nanostructures, macromolecules, and soft materials; more robust non-perturbative approaches such as RPA or coupled cluster methods should be used instead whenever possible.<br>" @default.
- W3210913144 created "2021-11-08" @default.
- W3210913144 creator A5012481320 @default.
- W3210913144 creator A5026490055 @default.
- W3210913144 creator A5035326725 @default.
- W3210913144 creator A5039082111 @default.
- W3210913144 creator A5048985003 @default.
- W3210913144 creator A5091066585 @default.
- W3210913144 date "2019-11-29" @default.
- W3210913144 modified "2023-09-27" @default.
- W3210913144 title "Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules" @default.
- W3210913144 doi "https://doi.org/10.26434/chemrxiv.11124251.v1" @default.
- W3210913144 hasPublicationYear "2019" @default.
- W3210913144 type Work @default.
- W3210913144 sameAs 3210913144 @default.
- W3210913144 citedByCount "0" @default.
- W3210913144 crossrefType "posted-content" @default.
- W3210913144 hasAuthorship W3210913144A5012481320 @default.
- W3210913144 hasAuthorship W3210913144A5026490055 @default.
- W3210913144 hasAuthorship W3210913144A5035326725 @default.
- W3210913144 hasAuthorship W3210913144A5039082111 @default.
- W3210913144 hasAuthorship W3210913144A5048985003 @default.
- W3210913144 hasAuthorship W3210913144A5091066585 @default.
- W3210913144 hasBestOaLocation W32109131441 @default.
- W3210913144 hasConcept C121332964 @default.
- W3210913144 hasConcept C121864883 @default.
- W3210913144 hasConcept C138309006 @default.
- W3210913144 hasConcept C152365726 @default.
- W3210913144 hasConcept C174256460 @default.
- W3210913144 hasConcept C184779094 @default.
- W3210913144 hasConcept C185592680 @default.
- W3210913144 hasConcept C19637589 @default.
- W3210913144 hasConcept C32909587 @default.
- W3210913144 hasConcept C62520636 @default.
- W3210913144 hasConcept C65956243 @default.
- W3210913144 hasConcept C93282013 @default.
- W3210913144 hasConceptScore W3210913144C121332964 @default.
- W3210913144 hasConceptScore W3210913144C121864883 @default.
- W3210913144 hasConceptScore W3210913144C138309006 @default.
- W3210913144 hasConceptScore W3210913144C152365726 @default.
- W3210913144 hasConceptScore W3210913144C174256460 @default.
- W3210913144 hasConceptScore W3210913144C184779094 @default.
- W3210913144 hasConceptScore W3210913144C185592680 @default.
- W3210913144 hasConceptScore W3210913144C19637589 @default.
- W3210913144 hasConceptScore W3210913144C32909587 @default.
- W3210913144 hasConceptScore W3210913144C62520636 @default.
- W3210913144 hasConceptScore W3210913144C65956243 @default.
- W3210913144 hasConceptScore W3210913144C93282013 @default.
- W3210913144 hasLocation W32109131441 @default.
- W3210913144 hasLocation W32109131442 @default.
- W3210913144 hasOpenAccess W3210913144 @default.
- W3210913144 hasPrimaryLocation W32109131441 @default.
- W3210913144 hasRelatedWork W1595333144 @default.
- W3210913144 hasRelatedWork W1984513317 @default.
- W3210913144 hasRelatedWork W2005834485 @default.
- W3210913144 hasRelatedWork W2019901344 @default.
- W3210913144 hasRelatedWork W2024883558 @default.
- W3210913144 hasRelatedWork W2329236997 @default.
- W3210913144 hasRelatedWork W2547601354 @default.
- W3210913144 hasRelatedWork W3007028946 @default.
- W3210913144 hasRelatedWork W3210913144 @default.
- W3210913144 hasRelatedWork W4240733434 @default.
- W3210913144 isParatext "false" @default.
- W3210913144 isRetracted "false" @default.
- W3210913144 magId "3210913144" @default.
- W3210913144 workType "article" @default.