Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210936503> ?p ?o ?g. }
- W3210936503 abstract "In this paper, we develop multilayer optical theory to model the real-time (in operando) optical response of a growing dielectric film being deposited by chemical vapor deposition (CVD), with a particular emphasis on understanding the deposition mechanism through direct detection of the adsorbates responsible for film growth by infrared reflection-absorption spectroscopy (IRRAS). The model involves a four-layer stack consisting of a vacuum over a monolayer or submonolayer of molecules adsorbed on the surface of a dielectric thin film, which, in turn, is growing on a metal substrate. It is well known that, in IRRAS, the sensitivity of p-polarized light to absorption by the molecular adsorbates is a function of the incident angle of the IR beam: at high angles, the sensitivity is highest. We show that, for incident beam angles above 70° (which are typically used in IRRAS experiments), the sensitivity also depends on the thickness and refractive index of the insulating thin film; as a result, the sensitivity changes dynamically during the growth of the dielectric layer. Our analysis shows that, at incident beam angles of ∼60°–70°, the sensitivity to molecular adsorbates is somewhat lower, but is almost independent of the oxide thickness from 0 to 100 nm and also independent of the oxide refractive index from 1.0 to 2.5. Despite the loss of sensitivity relative to that achievable at higher incident beam angles, 1000 scans at an incident angle of 60° are sufficient to obtain IR spectra of the adsorbed molecules with reasonable signal-to-noise ratios even at submonolayer coverages. Because the sensitivity at this incident beam angle is not thickness dependent, it is not an issue (as it is at higher beam angles) that additional oxide grows during the time required to acquire 1000 scans. Experiments can be performed using a conventional vacuum deposition system, in which the internal beam path is tens of cm. We demonstrate the use of these smaller incident beam angles to study the mechanism of a CVD process in real time by polarization-modulation IRRAS, obtained by subtracting the s-polarized from the p-polarized infrared spectra in order to eliminate the unpolarized component due to molecules in the beam path and on windows. We explore the surface coverage of various adsorbed intermediates during CVD of HfO2 from tetrakis-(dimethylamido)-hafnium (TDMAH) and water in the presence of the consumable inhibitor magnesium N,N-dimethylamino-diboranate [Mg(DMADB)2]. We find that the addition of the Mg(DMADB)2 inhibitor causes a decrease in the IR absorption from the adsorbed TDMAH precursor that correlates with the observed decrease in the HfO2 growth rate; this result indicates that the mechanism of inhibition involves Mg(DMADB)2 acting as a dynamic site-blocker that lowers the surface coverage of TDMAH." @default.
- W3210936503 created "2021-11-08" @default.
- W3210936503 creator A5047058288 @default.
- W3210936503 creator A5071024897 @default.
- W3210936503 creator A5079328565 @default.
- W3210936503 date "2021-11-03" @default.
- W3210936503 modified "2023-09-27" @default.
- W3210936503 title "Infrared reflection spectroscopy of adsorbed intermediates in real time during chemical vapor deposition of oxides" @default.
- W3210936503 cites W1964608748 @default.
- W3210936503 cites W1966924206 @default.
- W3210936503 cites W1967861271 @default.
- W3210936503 cites W1974105848 @default.
- W3210936503 cites W1981823857 @default.
- W3210936503 cites W1984391513 @default.
- W3210936503 cites W1986010885 @default.
- W3210936503 cites W1988807454 @default.
- W3210936503 cites W1992683080 @default.
- W3210936503 cites W1998377008 @default.
- W3210936503 cites W1998584164 @default.
- W3210936503 cites W2002772671 @default.
- W3210936503 cites W2010766880 @default.
- W3210936503 cites W2011764801 @default.
- W3210936503 cites W2011768629 @default.
- W3210936503 cites W2020296022 @default.
- W3210936503 cites W2030710562 @default.
- W3210936503 cites W2034239466 @default.
- W3210936503 cites W2036605676 @default.
- W3210936503 cites W2037195468 @default.
- W3210936503 cites W2038710412 @default.
- W3210936503 cites W2042343170 @default.
- W3210936503 cites W2057026947 @default.
- W3210936503 cites W2066637022 @default.
- W3210936503 cites W2073217890 @default.
- W3210936503 cites W2073428676 @default.
- W3210936503 cites W2075614107 @default.
- W3210936503 cites W2077123596 @default.
- W3210936503 cites W2078581490 @default.
- W3210936503 cites W2078594656 @default.
- W3210936503 cites W2084957418 @default.
- W3210936503 cites W2087042959 @default.
- W3210936503 cites W2087757172 @default.
- W3210936503 cites W2090380707 @default.
- W3210936503 cites W2095531934 @default.
- W3210936503 cites W2122699850 @default.
- W3210936503 cites W2128659391 @default.
- W3210936503 cites W2134204040 @default.
- W3210936503 cites W2148351706 @default.
- W3210936503 cites W2156129024 @default.
- W3210936503 cites W2176997977 @default.
- W3210936503 cites W2319804151 @default.
- W3210936503 cites W2515970246 @default.
- W3210936503 cites W2884986052 @default.
- W3210936503 cites W2888832454 @default.
- W3210936503 cites W2913252536 @default.
- W3210936503 cites W2938087732 @default.
- W3210936503 cites W2995774988 @default.
- W3210936503 cites W3009654272 @default.
- W3210936503 cites W3015625688 @default.
- W3210936503 cites W3015817622 @default.
- W3210936503 cites W41319287 @default.
- W3210936503 doi "https://doi.org/10.1116/6.0001328" @default.
- W3210936503 hasPublicationYear "2021" @default.
- W3210936503 type Work @default.
- W3210936503 sameAs 3210936503 @default.
- W3210936503 citedByCount "0" @default.
- W3210936503 crossrefType "journal-article" @default.
- W3210936503 hasAuthorship W3210936503A5047058288 @default.
- W3210936503 hasAuthorship W3210936503A5071024897 @default.
- W3210936503 hasAuthorship W3210936503A5079328565 @default.
- W3210936503 hasBestOaLocation W32109365031 @default.
- W3210936503 hasConcept C113196181 @default.
- W3210936503 hasConcept C119824511 @default.
- W3210936503 hasConcept C120665830 @default.
- W3210936503 hasConcept C121332964 @default.
- W3210936503 hasConcept C125287762 @default.
- W3210936503 hasConcept C133386390 @default.
- W3210936503 hasConcept C150394285 @default.
- W3210936503 hasConcept C153642686 @default.
- W3210936503 hasConcept C158355884 @default.
- W3210936503 hasConcept C170395517 @default.
- W3210936503 hasConcept C171250308 @default.
- W3210936503 hasConcept C178790620 @default.
- W3210936503 hasConcept C185592680 @default.
- W3210936503 hasConcept C19067145 @default.
- W3210936503 hasConcept C192562407 @default.
- W3210936503 hasConcept C2779851234 @default.
- W3210936503 hasConcept C32891209 @default.
- W3210936503 hasConcept C42067758 @default.
- W3210936503 hasConcept C49040817 @default.
- W3210936503 hasConcept C57410435 @default.
- W3210936503 hasConcept C62520636 @default.
- W3210936503 hasConceptScore W3210936503C113196181 @default.
- W3210936503 hasConceptScore W3210936503C119824511 @default.
- W3210936503 hasConceptScore W3210936503C120665830 @default.
- W3210936503 hasConceptScore W3210936503C121332964 @default.
- W3210936503 hasConceptScore W3210936503C125287762 @default.
- W3210936503 hasConceptScore W3210936503C133386390 @default.
- W3210936503 hasConceptScore W3210936503C150394285 @default.
- W3210936503 hasConceptScore W3210936503C153642686 @default.
- W3210936503 hasConceptScore W3210936503C158355884 @default.