Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210967461> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3210967461 abstract "With the increasing resolution of 3D laser scanners, the number of points in 3D point cloud becoming huge. For example,the number of points in the point cloud that collected form key components of train bottom usually reaches hundreds of thousands to millions. Generally, we would down sample the point cloud before the recognition, registration and reconstruction, which means using a simplified point set with less amount of points to represent the raw data. The Farthest Point Sampling algorithm (FPS) has been proven to be able to traverse the entire point cloud well by uniform sampling. However, it takes a long time for iterative calculation so that the calculation efficiency of this sampling algorithm performed not very well when the amount of points is large, whether it is used for deep learning or using handcraft algorithms for processing, it takes too much time in the sampling process. Therefore, this paper purposed a faster algorithm based on FPS that dividing the point cloud into several grids by octree, then allocating the number of sampling points in each grid according to the density of the points in the grids. The experimental results show that its running time is greatly reduced , and the calculation efficiency is significantly improved. Additionally, the results of the sampling points could also traverse the raw data and retain enough features for meanwhile. It can be practically applied to process the Traction rod device, Nut, Bolt and Wheelset or the other 3D point cloud of key components of train bottom definitely , making detection more efficient." @default.
- W3210967461 created "2021-11-08" @default.
- W3210967461 creator A5000766901 @default.
- W3210967461 creator A5004393670 @default.
- W3210967461 creator A5028868162 @default.
- W3210967461 creator A5030715326 @default.
- W3210967461 creator A5086155499 @default.
- W3210967461 date "2021-11-01" @default.
- W3210967461 modified "2023-09-26" @default.
- W3210967461 title "An efficient point sampling algorithm for train bottom key component detection" @default.
- W3210967461 doi "https://doi.org/10.1117/12.2605025" @default.
- W3210967461 hasPublicationYear "2021" @default.
- W3210967461 type Work @default.
- W3210967461 sameAs 3210967461 @default.
- W3210967461 citedByCount "0" @default.
- W3210967461 crossrefType "proceedings-article" @default.
- W3210967461 hasAuthorship W3210967461A5000766901 @default.
- W3210967461 hasAuthorship W3210967461A5004393670 @default.
- W3210967461 hasAuthorship W3210967461A5028868162 @default.
- W3210967461 hasAuthorship W3210967461A5030715326 @default.
- W3210967461 hasAuthorship W3210967461A5086155499 @default.
- W3210967461 hasConcept C106131492 @default.
- W3210967461 hasConcept C111919701 @default.
- W3210967461 hasConcept C11413529 @default.
- W3210967461 hasConcept C131979681 @default.
- W3210967461 hasConcept C13280743 @default.
- W3210967461 hasConcept C140779682 @default.
- W3210967461 hasConcept C141297171 @default.
- W3210967461 hasConcept C176809094 @default.
- W3210967461 hasConcept C185592680 @default.
- W3210967461 hasConcept C187691185 @default.
- W3210967461 hasConcept C198531522 @default.
- W3210967461 hasConcept C205649164 @default.
- W3210967461 hasConcept C2524010 @default.
- W3210967461 hasConcept C26517878 @default.
- W3210967461 hasConcept C28719098 @default.
- W3210967461 hasConcept C31972630 @default.
- W3210967461 hasConcept C33923547 @default.
- W3210967461 hasConcept C38652104 @default.
- W3210967461 hasConcept C41008148 @default.
- W3210967461 hasConcept C43617362 @default.
- W3210967461 hasConcept C79974875 @default.
- W3210967461 hasConcept C98045186 @default.
- W3210967461 hasConceptScore W3210967461C106131492 @default.
- W3210967461 hasConceptScore W3210967461C111919701 @default.
- W3210967461 hasConceptScore W3210967461C11413529 @default.
- W3210967461 hasConceptScore W3210967461C131979681 @default.
- W3210967461 hasConceptScore W3210967461C13280743 @default.
- W3210967461 hasConceptScore W3210967461C140779682 @default.
- W3210967461 hasConceptScore W3210967461C141297171 @default.
- W3210967461 hasConceptScore W3210967461C176809094 @default.
- W3210967461 hasConceptScore W3210967461C185592680 @default.
- W3210967461 hasConceptScore W3210967461C187691185 @default.
- W3210967461 hasConceptScore W3210967461C198531522 @default.
- W3210967461 hasConceptScore W3210967461C205649164 @default.
- W3210967461 hasConceptScore W3210967461C2524010 @default.
- W3210967461 hasConceptScore W3210967461C26517878 @default.
- W3210967461 hasConceptScore W3210967461C28719098 @default.
- W3210967461 hasConceptScore W3210967461C31972630 @default.
- W3210967461 hasConceptScore W3210967461C33923547 @default.
- W3210967461 hasConceptScore W3210967461C38652104 @default.
- W3210967461 hasConceptScore W3210967461C41008148 @default.
- W3210967461 hasConceptScore W3210967461C43617362 @default.
- W3210967461 hasConceptScore W3210967461C79974875 @default.
- W3210967461 hasConceptScore W3210967461C98045186 @default.
- W3210967461 hasLocation W32109674611 @default.
- W3210967461 hasOpenAccess W3210967461 @default.
- W3210967461 hasPrimaryLocation W32109674611 @default.
- W3210967461 hasRelatedWork W2099705163 @default.
- W3210967461 hasRelatedWork W2383532021 @default.
- W3210967461 hasRelatedWork W2385887640 @default.
- W3210967461 hasRelatedWork W2387407043 @default.
- W3210967461 hasRelatedWork W2392034603 @default.
- W3210967461 hasRelatedWork W2965967938 @default.
- W3210967461 hasRelatedWork W2971755476 @default.
- W3210967461 hasRelatedWork W2985745509 @default.
- W3210967461 hasRelatedWork W3210967461 @default.
- W3210967461 hasRelatedWork W4316136105 @default.
- W3210967461 isParatext "false" @default.
- W3210967461 isRetracted "false" @default.
- W3210967461 magId "3210967461" @default.
- W3210967461 workType "article" @default.