Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210987080> ?p ?o ?g. }
- W3210987080 endingPage "1722" @default.
- W3210987080 startingPage "1710" @default.
- W3210987080 abstract "Background Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data. Purpose To evaluate the transferability of a DL‐based ASL MRI denoising method (DLASL). Study Type Retrospective. Subjects Four hundred and twenty‐eight subjects (189 females) from three cohorts. Field Strength/Sequence 3 T two‐dimensional (2D) echo‐planar imaging (EPI)‐based pseudo‐continuous ASL (PCASL) and 2D EPI‐based pulsed ASL (PASL) sequences. Assessment DLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine‐tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non‐DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t ‐value and suprathreshold cluster size are outcome measures. Statistical Tests Paired t ‐test, two‐sample t ‐test, one‐way analysis of variance, and Tukey honestly significant difference, and linear mixed‐effects models were used. P < 0.05 was considered statistically significant. Results Mean contrast‐to‐noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD‐related hypoperfusion patterns compared with NonDL. Data Conclusion We demonstrated the DLASL's transferability across different ASL sequences and different populations. Level of Evidence 3 Technical Efficacy Stage 2" @default.
- W3210987080 created "2021-11-08" @default.
- W3210987080 creator A5002281375 @default.
- W3210987080 creator A5002875969 @default.
- W3210987080 creator A5003090841 @default.
- W3210987080 creator A5007012303 @default.
- W3210987080 creator A5011265334 @default.
- W3210987080 creator A5035352293 @default.
- W3210987080 creator A5049933355 @default.
- W3210987080 creator A5051924224 @default.
- W3210987080 creator A5067548058 @default.
- W3210987080 creator A5069053017 @default.
- W3210987080 creator A5078046664 @default.
- W3210987080 date "2021-11-06" @default.
- W3210987080 modified "2023-10-09" @default.
- W3210987080 title "Improving Sensitivity of Arterial Spin Labeling Perfusion <scp>MRI</scp> in Alzheimer's Disease Using Transfer Learning of Deep Learning‐Based <scp>ASL</scp> Denoising" @default.
- W3210987080 cites W1466544342 @default.
- W3210987080 cites W1841182567 @default.
- W3210987080 cites W1939737569 @default.
- W3210987080 cites W2007543006 @default.
- W3210987080 cites W2007734075 @default.
- W3210987080 cites W2020745232 @default.
- W3210987080 cites W2025009638 @default.
- W3210987080 cites W2056361646 @default.
- W3210987080 cites W2092062478 @default.
- W3210987080 cites W2109381172 @default.
- W3210987080 cites W2116641010 @default.
- W3210987080 cites W2120338775 @default.
- W3210987080 cites W2147816079 @default.
- W3210987080 cites W2150021250 @default.
- W3210987080 cites W2161167354 @default.
- W3210987080 cites W2337323496 @default.
- W3210987080 cites W2343172899 @default.
- W3210987080 cites W2620199441 @default.
- W3210987080 cites W2770470956 @default.
- W3210987080 cites W2786907498 @default.
- W3210987080 cites W2810140304 @default.
- W3210987080 cites W2954941287 @default.
- W3210987080 cites W2963879881 @default.
- W3210987080 cites W2979891860 @default.
- W3210987080 cites W3000078575 @default.
- W3210987080 cites W3043231745 @default.
- W3210987080 cites W4233867216 @default.
- W3210987080 cites W4249736682 @default.
- W3210987080 cites W4254751698 @default.
- W3210987080 doi "https://doi.org/10.1002/jmri.27984" @default.
- W3210987080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34741576" @default.
- W3210987080 hasPublicationYear "2021" @default.
- W3210987080 type Work @default.
- W3210987080 sameAs 3210987080 @default.
- W3210987080 citedByCount "10" @default.
- W3210987080 countsByYear W32109870802021 @default.
- W3210987080 countsByYear W32109870802022 @default.
- W3210987080 countsByYear W32109870802023 @default.
- W3210987080 crossrefType "journal-article" @default.
- W3210987080 hasAuthorship W3210987080A5002281375 @default.
- W3210987080 hasAuthorship W3210987080A5002875969 @default.
- W3210987080 hasAuthorship W3210987080A5003090841 @default.
- W3210987080 hasAuthorship W3210987080A5007012303 @default.
- W3210987080 hasAuthorship W3210987080A5011265334 @default.
- W3210987080 hasAuthorship W3210987080A5035352293 @default.
- W3210987080 hasAuthorship W3210987080A5049933355 @default.
- W3210987080 hasAuthorship W3210987080A5051924224 @default.
- W3210987080 hasAuthorship W3210987080A5067548058 @default.
- W3210987080 hasAuthorship W3210987080A5069053017 @default.
- W3210987080 hasAuthorship W3210987080A5078046664 @default.
- W3210987080 hasBestOaLocation W32109870801 @default.
- W3210987080 hasConcept C126322002 @default.
- W3210987080 hasConcept C126838900 @default.
- W3210987080 hasConcept C135691158 @default.
- W3210987080 hasConcept C143409427 @default.
- W3210987080 hasConcept C146957229 @default.
- W3210987080 hasConcept C154945302 @default.
- W3210987080 hasConcept C157767197 @default.
- W3210987080 hasConcept C2989005 @default.
- W3210987080 hasConcept C3018723549 @default.
- W3210987080 hasConcept C41008148 @default.
- W3210987080 hasConcept C71924100 @default.
- W3210987080 hasConceptScore W3210987080C126322002 @default.
- W3210987080 hasConceptScore W3210987080C126838900 @default.
- W3210987080 hasConceptScore W3210987080C135691158 @default.
- W3210987080 hasConceptScore W3210987080C143409427 @default.
- W3210987080 hasConceptScore W3210987080C146957229 @default.
- W3210987080 hasConceptScore W3210987080C154945302 @default.
- W3210987080 hasConceptScore W3210987080C157767197 @default.
- W3210987080 hasConceptScore W3210987080C2989005 @default.
- W3210987080 hasConceptScore W3210987080C3018723549 @default.
- W3210987080 hasConceptScore W3210987080C41008148 @default.
- W3210987080 hasConceptScore W3210987080C71924100 @default.
- W3210987080 hasFunder F4320306078 @default.
- W3210987080 hasFunder F4320306080 @default.
- W3210987080 hasFunder F4320306219 @default.
- W3210987080 hasFunder F4320307132 @default.
- W3210987080 hasFunder F4320307758 @default.
- W3210987080 hasFunder F4320307765 @default.
- W3210987080 hasFunder F4320307776 @default.
- W3210987080 hasFunder F4320307779 @default.
- W3210987080 hasFunder F4320308604 @default.