Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211033912> ?p ?o ?g. }
- W3211033912 endingPage "1933" @default.
- W3211033912 startingPage "1913" @default.
- W3211033912 abstract "This study introduces a hybrid Latent Dirichlet Allocation (LDA) model to excavate hidden crash patterns from the large-scale crash dataset. External semantic descriptions have been attached to raw GPS coordinates of crash events. The K-means clustering algorithm is first applied to determine land use characteristics of crash points by grouping surrounding Points of Interests (POIs). Then, each crash record is transformed into a formalized label consisting of land use, Annual Average Daily Traffic (AADT), and time stamps, allowing the analysis of massive traffic crash data as document corpora. Finally, a data-driven modeling approach based on the LDA is conducted to discover hidden crash patterns from traffic crash records combining the external semantic information. The approach is verified using motor vehicle crash data in Manhattan County of New York City. The novel semantic analysis of crash records provides an effective method to investigate the hidden information in traffic crashes. Identifying spatial-temporal patterns on motor vehicle crashes would provide insights into underlying traffic behaviors for intelligent policy-making and resource allocation." @default.
- W3211033912 created "2021-11-08" @default.
- W3211033912 creator A5017343408 @default.
- W3211033912 creator A5034853402 @default.
- W3211033912 creator A5039091156 @default.
- W3211033912 creator A5060363706 @default.
- W3211033912 creator A5080139506 @default.
- W3211033912 date "2021-10-27" @default.
- W3211033912 modified "2023-10-16" @default.
- W3211033912 title "A semantic embedding methodology for motor vehicle crash records: A case study of traffic safety in Manhattan Borough of New York City" @default.
- W3211033912 cites W1684880141 @default.
- W3211033912 cites W1976381554 @default.
- W3211033912 cites W1979788042 @default.
- W3211033912 cites W1985101747 @default.
- W3211033912 cites W1986672179 @default.
- W3211033912 cites W1988570298 @default.
- W3211033912 cites W1997133953 @default.
- W3211033912 cites W2014283035 @default.
- W3211033912 cites W2018302799 @default.
- W3211033912 cites W2019192765 @default.
- W3211033912 cites W2020286845 @default.
- W3211033912 cites W2027349022 @default.
- W3211033912 cites W2030559516 @default.
- W3211033912 cites W2039456928 @default.
- W3211033912 cites W2040376553 @default.
- W3211033912 cites W2042451995 @default.
- W3211033912 cites W2043864789 @default.
- W3211033912 cites W2047652980 @default.
- W3211033912 cites W2062603300 @default.
- W3211033912 cites W2080911646 @default.
- W3211033912 cites W2101779414 @default.
- W3211033912 cites W2102930021 @default.
- W3211033912 cites W2103739656 @default.
- W3211033912 cites W2110239845 @default.
- W3211033912 cites W2115958918 @default.
- W3211033912 cites W2127991156 @default.
- W3211033912 cites W2133898263 @default.
- W3211033912 cites W2252688755 @default.
- W3211033912 cites W2566556479 @default.
- W3211033912 cites W2566868490 @default.
- W3211033912 cites W2596738355 @default.
- W3211033912 cites W2755763809 @default.
- W3211033912 cites W2791040474 @default.
- W3211033912 cites W2792636950 @default.
- W3211033912 cites W2807583084 @default.
- W3211033912 cites W2883449929 @default.
- W3211033912 cites W2893784831 @default.
- W3211033912 cites W2901595840 @default.
- W3211033912 cites W2929012434 @default.
- W3211033912 cites W2943299720 @default.
- W3211033912 cites W2950383934 @default.
- W3211033912 cites W2967298012 @default.
- W3211033912 cites W2972926840 @default.
- W3211033912 cites W2973215173 @default.
- W3211033912 cites W2984626942 @default.
- W3211033912 cites W3000998105 @default.
- W3211033912 cites W3006324460 @default.
- W3211033912 cites W3010406054 @default.
- W3211033912 cites W3034459035 @default.
- W3211033912 cites W3039738118 @default.
- W3211033912 cites W3161651929 @default.
- W3211033912 cites W3165062330 @default.
- W3211033912 cites W3165567642 @default.
- W3211033912 cites W3191638596 @default.
- W3211033912 cites W4240579883 @default.
- W3211033912 doi "https://doi.org/10.1080/19439962.2021.1994681" @default.
- W3211033912 hasPublicationYear "2021" @default.
- W3211033912 type Work @default.
- W3211033912 sameAs 3211033912 @default.
- W3211033912 citedByCount "3" @default.
- W3211033912 countsByYear W32110339122022 @default.
- W3211033912 crossrefType "journal-article" @default.
- W3211033912 hasAuthorship W3211033912A5017343408 @default.
- W3211033912 hasAuthorship W3211033912A5034853402 @default.
- W3211033912 hasAuthorship W3211033912A5039091156 @default.
- W3211033912 hasAuthorship W3211033912A5060363706 @default.
- W3211033912 hasAuthorship W3211033912A5080139506 @default.
- W3211033912 hasConcept C119857082 @default.
- W3211033912 hasConcept C124101348 @default.
- W3211033912 hasConcept C127413603 @default.
- W3211033912 hasConcept C171686336 @default.
- W3211033912 hasConcept C183469790 @default.
- W3211033912 hasConcept C199360897 @default.
- W3211033912 hasConcept C22212356 @default.
- W3211033912 hasConcept C23123220 @default.
- W3211033912 hasConcept C2777113093 @default.
- W3211033912 hasConcept C41008148 @default.
- W3211033912 hasConcept C500882744 @default.
- W3211033912 hasConcept C73555534 @default.
- W3211033912 hasConceptScore W3211033912C119857082 @default.
- W3211033912 hasConceptScore W3211033912C124101348 @default.
- W3211033912 hasConceptScore W3211033912C127413603 @default.
- W3211033912 hasConceptScore W3211033912C171686336 @default.
- W3211033912 hasConceptScore W3211033912C183469790 @default.
- W3211033912 hasConceptScore W3211033912C199360897 @default.
- W3211033912 hasConceptScore W3211033912C22212356 @default.
- W3211033912 hasConceptScore W3211033912C23123220 @default.
- W3211033912 hasConceptScore W3211033912C2777113093 @default.