Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211036174> ?p ?o ?g. }
- W3211036174 endingPage "115411" @default.
- W3211036174 startingPage "115411" @default.
- W3211036174 abstract "Today artificial intelligence is a major utility technology that can help industry and research in many fields, including solar thermal energy for water desalination purposes. Hence, the main aim of the paper focus on utilizing an artificial intelligent regression model to predict the efficiency of water desalination, which depends on solar thermal energy. The contribution helps manufacturers and research determine the productivity of the designed desalination system in the beta environment before realizing the system. The used desalination system merges and hybrids in our experimental modelling solar still and air humidification and dehumidification. Regards the prediction of performance and productivity, a wide range of regression algorithms, including multilayer perceptron (MLP), decision trees (DT), and Bayesian ridge regression (BRR), were applied. Also, the MLP is optimized to enhance the prediction by employing the Adam optimization to propose OMLP. The OMLP is compared to regular MLP, DT, and BRR using a variety of evaluation metrics, including statistical measures, the goodness of fit, and regression accuracy. The OMLP achieves better performance of dependent variables; YHDH, YSS, Tswh,in, Tswh,o, Ta,H,in, Ta,H,o, and Φa,H,in using whole independent variables by RMSE ∈ [0.07171, 8.05636], Max Error ∈ [0.10108, 14.19858], and CRM ∈ [0.0202, 0.0329] and using top three correlated independent variables by MAE ∈ [0. 0514, 5.777], RMSE ∈ [0.07171, 7.0559], and CRM ∈ [0.0029, 0.0498]." @default.
- W3211036174 created "2021-11-08" @default.
- W3211036174 creator A5033159072 @default.
- W3211036174 creator A5041640061 @default.
- W3211036174 creator A5060883234 @default.
- W3211036174 creator A5079205594 @default.
- W3211036174 date "2022-01-01" @default.
- W3211036174 modified "2023-10-17" @default.
- W3211036174 title "Predictive modelling for solar power-driven hybrid desalination system using artificial neural network regression with Adam optimization" @default.
- W3211036174 cites W1557534779 @default.
- W3211036174 cites W1977002251 @default.
- W3211036174 cites W1977596813 @default.
- W3211036174 cites W1987552279 @default.
- W3211036174 cites W1991023460 @default.
- W3211036174 cites W2001220879 @default.
- W3211036174 cites W2003828779 @default.
- W3211036174 cites W2046543364 @default.
- W3211036174 cites W2047450756 @default.
- W3211036174 cites W2067371767 @default.
- W3211036174 cites W2070678700 @default.
- W3211036174 cites W2095257611 @default.
- W3211036174 cites W2151265257 @default.
- W3211036174 cites W2467039487 @default.
- W3211036174 cites W2665304925 @default.
- W3211036174 cites W2794778778 @default.
- W3211036174 cites W2804517943 @default.
- W3211036174 cites W2901312569 @default.
- W3211036174 cites W2904800847 @default.
- W3211036174 cites W2913949647 @default.
- W3211036174 cites W2971724044 @default.
- W3211036174 cites W2997616550 @default.
- W3211036174 cites W3003848908 @default.
- W3211036174 cites W3008809014 @default.
- W3211036174 cites W3014865388 @default.
- W3211036174 cites W3021849583 @default.
- W3211036174 cites W3024174658 @default.
- W3211036174 cites W3080152366 @default.
- W3211036174 cites W3090628485 @default.
- W3211036174 cites W3092655370 @default.
- W3211036174 cites W3099072551 @default.
- W3211036174 cites W3127670633 @default.
- W3211036174 cites W3127861066 @default.
- W3211036174 cites W3172296847 @default.
- W3211036174 cites W3173726109 @default.
- W3211036174 cites W3185131907 @default.
- W3211036174 doi "https://doi.org/10.1016/j.desal.2021.115411" @default.
- W3211036174 hasPublicationYear "2022" @default.
- W3211036174 type Work @default.
- W3211036174 sameAs 3211036174 @default.
- W3211036174 citedByCount "39" @default.
- W3211036174 countsByYear W32110361742022 @default.
- W3211036174 countsByYear W32110361742023 @default.
- W3211036174 crossrefType "journal-article" @default.
- W3211036174 hasAuthorship W3211036174A5033159072 @default.
- W3211036174 hasAuthorship W3211036174A5041640061 @default.
- W3211036174 hasAuthorship W3211036174A5060883234 @default.
- W3211036174 hasAuthorship W3211036174A5079205594 @default.
- W3211036174 hasConcept C105795698 @default.
- W3211036174 hasConcept C119857082 @default.
- W3211036174 hasConcept C127413603 @default.
- W3211036174 hasConcept C139945424 @default.
- W3211036174 hasConcept C152877465 @default.
- W3211036174 hasConcept C154945302 @default.
- W3211036174 hasConcept C179717631 @default.
- W3211036174 hasConcept C185592680 @default.
- W3211036174 hasConcept C21880701 @default.
- W3211036174 hasConcept C2776870568 @default.
- W3211036174 hasConcept C33923547 @default.
- W3211036174 hasConcept C41008148 @default.
- W3211036174 hasConcept C41625074 @default.
- W3211036174 hasConcept C45804977 @default.
- W3211036174 hasConcept C48921125 @default.
- W3211036174 hasConcept C50644808 @default.
- W3211036174 hasConcept C55493867 @default.
- W3211036174 hasConcept C60908668 @default.
- W3211036174 hasConcept C85617194 @default.
- W3211036174 hasConceptScore W3211036174C105795698 @default.
- W3211036174 hasConceptScore W3211036174C119857082 @default.
- W3211036174 hasConceptScore W3211036174C127413603 @default.
- W3211036174 hasConceptScore W3211036174C139945424 @default.
- W3211036174 hasConceptScore W3211036174C152877465 @default.
- W3211036174 hasConceptScore W3211036174C154945302 @default.
- W3211036174 hasConceptScore W3211036174C179717631 @default.
- W3211036174 hasConceptScore W3211036174C185592680 @default.
- W3211036174 hasConceptScore W3211036174C21880701 @default.
- W3211036174 hasConceptScore W3211036174C2776870568 @default.
- W3211036174 hasConceptScore W3211036174C33923547 @default.
- W3211036174 hasConceptScore W3211036174C41008148 @default.
- W3211036174 hasConceptScore W3211036174C41625074 @default.
- W3211036174 hasConceptScore W3211036174C45804977 @default.
- W3211036174 hasConceptScore W3211036174C48921125 @default.
- W3211036174 hasConceptScore W3211036174C50644808 @default.
- W3211036174 hasConceptScore W3211036174C55493867 @default.
- W3211036174 hasConceptScore W3211036174C60908668 @default.
- W3211036174 hasConceptScore W3211036174C85617194 @default.
- W3211036174 hasLocation W32110361741 @default.
- W3211036174 hasOpenAccess W3211036174 @default.
- W3211036174 hasPrimaryLocation W32110361741 @default.