Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211115215> ?p ?o ?g. }
- W3211115215 endingPage "104974" @default.
- W3211115215 startingPage "104974" @default.
- W3211115215 abstract "The successful application of geographic information system (GIS)-based mineral prospectivity mapping (MPM) essentially relies on two factors: one is reasonable evidential layers that conform to geological cognition, and the other is excellent models that can extract critical prospecting information from evidential layers. Geological features in MPM are usually discretized by categorizing them into classes and assigning the same or linear weights to each class, which suffer from bias in the interpretation of geological processes under ambiguous knowledge. Moreover, either unsupervised or supervised MPM models are constructed based on the assumption that the variables are relatively independent or identically distributed. In terms of these two issues, this study develops a joint workflow that combines a rational evidence layer weighting method and a deep learning MPM model, considering both the spatial and genetic associations of geological features. A data-driven singularity-based weighting method is first applied to evaluate the relative importance of geological features for mineralization and assign continuous weights to evidential layers using a nonlinear function that is consistent with existing geological models. Then, a more recent deep learning model, namely the long short-term memory network, is employed to extract and integrate the deep-level geological prospecting information among the weighted evidence layers. This joint approach was demonstrated with the help of a case study targeting Fe mineralization in southwestern Fujian Province, China. The mineral potential map obtained using this approach revealed that almost all the known Fe mineral deposits developed in the delineated high prospective regions, indicating that the proposed workflow is reasonable and meaningful for MPM." @default.
- W3211115215 created "2021-11-08" @default.
- W3211115215 creator A5008183305 @default.
- W3211115215 creator A5013137029 @default.
- W3211115215 date "2022-01-01" @default.
- W3211115215 modified "2023-10-15" @default.
- W3211115215 title "Mineral prospectivity mapping using a joint singularity-based weighting method and long short-term memory network" @default.
- W3211115215 cites W184020796 @default.
- W3211115215 cites W1967380063 @default.
- W3211115215 cites W1971954547 @default.
- W3211115215 cites W1979081224 @default.
- W3211115215 cites W1999045373 @default.
- W3211115215 cites W2007003157 @default.
- W3211115215 cites W2012470931 @default.
- W3211115215 cites W2018366608 @default.
- W3211115215 cites W2036956254 @default.
- W3211115215 cites W2053125118 @default.
- W3211115215 cites W2054607421 @default.
- W3211115215 cites W20569399 @default.
- W3211115215 cites W2064675550 @default.
- W3211115215 cites W2074819027 @default.
- W3211115215 cites W2078112764 @default.
- W3211115215 cites W2078527064 @default.
- W3211115215 cites W2154039449 @default.
- W3211115215 cites W2159469384 @default.
- W3211115215 cites W2180178176 @default.
- W3211115215 cites W2243193383 @default.
- W3211115215 cites W2281749897 @default.
- W3211115215 cites W2342740937 @default.
- W3211115215 cites W2419034429 @default.
- W3211115215 cites W2598606761 @default.
- W3211115215 cites W2739437986 @default.
- W3211115215 cites W2761218489 @default.
- W3211115215 cites W2777670633 @default.
- W3211115215 cites W2896335697 @default.
- W3211115215 cites W2921482850 @default.
- W3211115215 cites W2954328919 @default.
- W3211115215 cites W2999446243 @default.
- W3211115215 cites W3005741980 @default.
- W3211115215 cites W3011095109 @default.
- W3211115215 cites W3016126888 @default.
- W3211115215 cites W3024761859 @default.
- W3211115215 cites W3025212340 @default.
- W3211115215 cites W3086825826 @default.
- W3211115215 cites W3106310288 @default.
- W3211115215 cites W3107136435 @default.
- W3211115215 cites W3124465846 @default.
- W3211115215 cites W3154176209 @default.
- W3211115215 cites W3158114183 @default.
- W3211115215 cites W3163225286 @default.
- W3211115215 cites W3170808880 @default.
- W3211115215 cites W3175535587 @default.
- W3211115215 cites W4240485910 @default.
- W3211115215 doi "https://doi.org/10.1016/j.cageo.2021.104974" @default.
- W3211115215 hasPublicationYear "2022" @default.
- W3211115215 type Work @default.
- W3211115215 sameAs 3211115215 @default.
- W3211115215 citedByCount "17" @default.
- W3211115215 countsByYear W32111152152022 @default.
- W3211115215 countsByYear W32111152152023 @default.
- W3211115215 crossrefType "journal-article" @default.
- W3211115215 hasAuthorship W3211115215A5008183305 @default.
- W3211115215 hasAuthorship W3211115215A5013137029 @default.
- W3211115215 hasConcept C109007969 @default.
- W3211115215 hasConcept C114793014 @default.
- W3211115215 hasConcept C124101348 @default.
- W3211115215 hasConcept C126838900 @default.
- W3211115215 hasConcept C127313418 @default.
- W3211115215 hasConcept C153180895 @default.
- W3211115215 hasConcept C154945302 @default.
- W3211115215 hasConcept C16674752 @default.
- W3211115215 hasConcept C17409809 @default.
- W3211115215 hasConcept C175181221 @default.
- W3211115215 hasConcept C177212765 @default.
- W3211115215 hasConcept C183115368 @default.
- W3211115215 hasConcept C41008148 @default.
- W3211115215 hasConcept C55358776 @default.
- W3211115215 hasConcept C66264921 @default.
- W3211115215 hasConcept C71924100 @default.
- W3211115215 hasConcept C77088390 @default.
- W3211115215 hasConcept C82586738 @default.
- W3211115215 hasConceptScore W3211115215C109007969 @default.
- W3211115215 hasConceptScore W3211115215C114793014 @default.
- W3211115215 hasConceptScore W3211115215C124101348 @default.
- W3211115215 hasConceptScore W3211115215C126838900 @default.
- W3211115215 hasConceptScore W3211115215C127313418 @default.
- W3211115215 hasConceptScore W3211115215C153180895 @default.
- W3211115215 hasConceptScore W3211115215C154945302 @default.
- W3211115215 hasConceptScore W3211115215C16674752 @default.
- W3211115215 hasConceptScore W3211115215C17409809 @default.
- W3211115215 hasConceptScore W3211115215C175181221 @default.
- W3211115215 hasConceptScore W3211115215C177212765 @default.
- W3211115215 hasConceptScore W3211115215C183115368 @default.
- W3211115215 hasConceptScore W3211115215C41008148 @default.
- W3211115215 hasConceptScore W3211115215C55358776 @default.
- W3211115215 hasConceptScore W3211115215C66264921 @default.
- W3211115215 hasConceptScore W3211115215C71924100 @default.
- W3211115215 hasConceptScore W3211115215C77088390 @default.