Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211149385> ?p ?o ?g. }
- W3211149385 endingPage "100763" @default.
- W3211149385 startingPage "100763" @default.
- W3211149385 abstract "With the massive incidence of cancer in recent centuries, it is crucial to carefully analyze the recorded information and provide a thought-out plan for patients’ treatment. A prevalent type of cancer among men, which takes many lives annually, is prostate cancer. The widespread use of machine learning methods can be beneficial for alleviating prostate cancer and minimizing the large number of patients who die due to this cancer. In this research, we proposed a hybrid methodology for predicting the survivability of patients suffering from prostate cancer by applying the Factor Analysis of Mixed Data (FAMD) algorithm, along with under-sampling methods for the SEER dataset as the pre-processing step prior to the main models, namely XGBoost, random forest (RF), support vector machine (SVM), and logistic regression (LR) with a cross-validation technique for parameter tuning to predict both binary labeled and multi-class labeled (including other causes of death) cases, which has been rarely investigated in other related studies. The sensitivity analysis was done by cluster centroid as an under-sampling method by which the different proportions of the majority and minority classes were examined for training the binary classification. This strategy showed using different ratios of the binary classes can influence the accuracy of prediction and prevents overfitting. Having evaluated the models by proper criteria, such as G-mean, we realized the XGBoost (86.28%) and SVM (67.81%) models outperformed the others for two and three-class outcomes, respectively. Compared with similar studies, our method successfully separated the patients regarding their mortality status and if they have passed away due to prostate cancer that can be important for clinical decision making or whether medical experts are required to change their treatment strategy." @default.
- W3211149385 created "2021-11-08" @default.
- W3211149385 creator A5004428537 @default.
- W3211149385 creator A5032935750 @default.
- W3211149385 creator A5087153469 @default.
- W3211149385 creator A5090383437 @default.
- W3211149385 creator A5033493355 @default.
- W3211149385 date "2021-01-01" @default.
- W3211149385 modified "2023-09-27" @default.
- W3211149385 title "A hybrid machine learning approach for predicting survival of patients with prostate cancer: A SEER-based population study" @default.
- W3211149385 cites W1967803810 @default.
- W3211149385 cites W1972404374 @default.
- W3211149385 cites W1994454819 @default.
- W3211149385 cites W2003517299 @default.
- W3211149385 cites W2023590027 @default.
- W3211149385 cites W2039332006 @default.
- W3211149385 cites W2045049630 @default.
- W3211149385 cites W2070493638 @default.
- W3211149385 cites W2106148864 @default.
- W3211149385 cites W2165240856 @default.
- W3211149385 cites W2262790950 @default.
- W3211149385 cites W2295155298 @default.
- W3211149385 cites W2346900381 @default.
- W3211149385 cites W2612634114 @default.
- W3211149385 cites W2738113705 @default.
- W3211149385 cites W2766815401 @default.
- W3211149385 cites W2773413394 @default.
- W3211149385 cites W2796592647 @default.
- W3211149385 cites W2880688206 @default.
- W3211149385 cites W2890542093 @default.
- W3211149385 cites W2896206046 @default.
- W3211149385 cites W2901864153 @default.
- W3211149385 cites W2906246826 @default.
- W3211149385 cites W2908219848 @default.
- W3211149385 cites W2909641414 @default.
- W3211149385 cites W2911964244 @default.
- W3211149385 cites W2937483840 @default.
- W3211149385 cites W2956251445 @default.
- W3211149385 cites W2963034386 @default.
- W3211149385 cites W2963156201 @default.
- W3211149385 cites W2963397933 @default.
- W3211149385 cites W2972052374 @default.
- W3211149385 cites W2988487920 @default.
- W3211149385 cites W2998490530 @default.
- W3211149385 cites W3026636794 @default.
- W3211149385 cites W3035857330 @default.
- W3211149385 cites W3097170121 @default.
- W3211149385 cites W4239510810 @default.
- W3211149385 cites W4294541781 @default.
- W3211149385 cites W2728178201 @default.
- W3211149385 doi "https://doi.org/10.1016/j.imu.2021.100763" @default.
- W3211149385 hasPublicationYear "2021" @default.
- W3211149385 type Work @default.
- W3211149385 sameAs 3211149385 @default.
- W3211149385 citedByCount "5" @default.
- W3211149385 countsByYear W32111493852022 @default.
- W3211149385 countsByYear W32111493852023 @default.
- W3211149385 crossrefType "journal-article" @default.
- W3211149385 hasAuthorship W3211149385A5004428537 @default.
- W3211149385 hasAuthorship W3211149385A5032935750 @default.
- W3211149385 hasAuthorship W3211149385A5033493355 @default.
- W3211149385 hasAuthorship W3211149385A5087153469 @default.
- W3211149385 hasAuthorship W3211149385A5090383437 @default.
- W3211149385 hasBestOaLocation W32111493851 @default.
- W3211149385 hasConcept C105795698 @default.
- W3211149385 hasConcept C119857082 @default.
- W3211149385 hasConcept C121608353 @default.
- W3211149385 hasConcept C12267149 @default.
- W3211149385 hasConcept C126322002 @default.
- W3211149385 hasConcept C151956035 @default.
- W3211149385 hasConcept C154945302 @default.
- W3211149385 hasConcept C169258074 @default.
- W3211149385 hasConcept C22019652 @default.
- W3211149385 hasConcept C2780192828 @default.
- W3211149385 hasConcept C2908647359 @default.
- W3211149385 hasConcept C33923547 @default.
- W3211149385 hasConcept C41008148 @default.
- W3211149385 hasConcept C50644808 @default.
- W3211149385 hasConcept C66905080 @default.
- W3211149385 hasConcept C71924100 @default.
- W3211149385 hasConcept C99454951 @default.
- W3211149385 hasConceptScore W3211149385C105795698 @default.
- W3211149385 hasConceptScore W3211149385C119857082 @default.
- W3211149385 hasConceptScore W3211149385C121608353 @default.
- W3211149385 hasConceptScore W3211149385C12267149 @default.
- W3211149385 hasConceptScore W3211149385C126322002 @default.
- W3211149385 hasConceptScore W3211149385C151956035 @default.
- W3211149385 hasConceptScore W3211149385C154945302 @default.
- W3211149385 hasConceptScore W3211149385C169258074 @default.
- W3211149385 hasConceptScore W3211149385C22019652 @default.
- W3211149385 hasConceptScore W3211149385C2780192828 @default.
- W3211149385 hasConceptScore W3211149385C2908647359 @default.
- W3211149385 hasConceptScore W3211149385C33923547 @default.
- W3211149385 hasConceptScore W3211149385C41008148 @default.
- W3211149385 hasConceptScore W3211149385C50644808 @default.
- W3211149385 hasConceptScore W3211149385C66905080 @default.
- W3211149385 hasConceptScore W3211149385C71924100 @default.
- W3211149385 hasConceptScore W3211149385C99454951 @default.