Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211196908> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3211196908 abstract "Abstract BackgroundThe combination of magnetic resonance imaging (MRI)-anatomical information with positron emission tomography (PET) image reconstruction has been shown to improve PET image quality in terms of spatial resolution and image noise, especially in brain PET imaging. There are different approaches to combine MRI and PET available, being the use of a Bayesian framework the most extended. Generally, the strength of the prior is controlled by a hyperparameter that needs to be tuned depending on the acquired statistics/counts and the desired image quality in the resulting PET image. However, comparisons between methods is scant, and it is not clear how sensitive they are to the different levels of statistics that can be measured in a PET scan. MethodsIn this work we employed maximum a posteriori (MAP) reconstruction with MRI information to guide the PET reconstruction, and evaluated the performance of several prior models and optimization methods with a fixed and adaptive hyperparameter. Different simulated scenarios, and measured data using different radiotracers at different levels of statistics were employed for the evaluation. Comparisons in image quality and quanti cation between methods were performed in different brain cortical and sub-cortical regions. ResultsSimulated data showed that an adaptive hyperparameter consistently outperformed a fixed hyperparameter for every image reconstruction algorithm implemented. The best performance was achieved with a model combining the Bowsher prior weighted by similarity coefficients based on joint entropy between PET and MRI. One-step-late (OSL) and preconditioned gradient ascent (PGA) optimization methods performed similarly at any level of statistics and number of iterations, so long as the hyperparameter was adaptive. ConclusionsResults with simulated and measured data agreed that MAP reconstruction outperformed OSEM reconstruction, especially at low level of statistics, without any need of tuning. High resolution and low noise images were obtained using MAP reconstruction for 5{30 minutes scan times, showing negligible image quality difference for different radiotracers." @default.
- W3211196908 created "2021-11-08" @default.
- W3211196908 creator A5010465497 @default.
- W3211196908 creator A5012464208 @default.
- W3211196908 date "2021-10-28" @default.
- W3211196908 modified "2023-10-16" @default.
- W3211196908 title "MRI-guided PET Reconstruction with Adaptive Prior Strength: Study on Image Quality at Different Levels of Statistics" @default.
- W3211196908 cites W2017162022 @default.
- W3211196908 cites W2037922117 @default.
- W3211196908 cites W2068100966 @default.
- W3211196908 cites W2142587291 @default.
- W3211196908 cites W2156612134 @default.
- W3211196908 cites W2156994346 @default.
- W3211196908 cites W2162308311 @default.
- W3211196908 cites W2336208919 @default.
- W3211196908 cites W2620613906 @default.
- W3211196908 cites W2766840568 @default.
- W3211196908 cites W3000689068 @default.
- W3211196908 cites W3125358735 @default.
- W3211196908 cites W3150148666 @default.
- W3211196908 doi "https://doi.org/10.21203/rs.3.rs-1005986/v1" @default.
- W3211196908 hasPublicationYear "2021" @default.
- W3211196908 type Work @default.
- W3211196908 sameAs 3211196908 @default.
- W3211196908 citedByCount "0" @default.
- W3211196908 crossrefType "posted-content" @default.
- W3211196908 hasAuthorship W3211196908A5010465497 @default.
- W3211196908 hasAuthorship W3211196908A5012464208 @default.
- W3211196908 hasBestOaLocation W32111969081 @default.
- W3211196908 hasConcept C105795698 @default.
- W3211196908 hasConcept C115961682 @default.
- W3211196908 hasConcept C141379421 @default.
- W3211196908 hasConcept C153180895 @default.
- W3211196908 hasConcept C154945302 @default.
- W3211196908 hasConcept C205372480 @default.
- W3211196908 hasConcept C2775842073 @default.
- W3211196908 hasConcept C2989005 @default.
- W3211196908 hasConcept C33923547 @default.
- W3211196908 hasConcept C41008148 @default.
- W3211196908 hasConcept C49781872 @default.
- W3211196908 hasConcept C55020928 @default.
- W3211196908 hasConcept C71924100 @default.
- W3211196908 hasConcept C8642999 @default.
- W3211196908 hasConcept C9810830 @default.
- W3211196908 hasConceptScore W3211196908C105795698 @default.
- W3211196908 hasConceptScore W3211196908C115961682 @default.
- W3211196908 hasConceptScore W3211196908C141379421 @default.
- W3211196908 hasConceptScore W3211196908C153180895 @default.
- W3211196908 hasConceptScore W3211196908C154945302 @default.
- W3211196908 hasConceptScore W3211196908C205372480 @default.
- W3211196908 hasConceptScore W3211196908C2775842073 @default.
- W3211196908 hasConceptScore W3211196908C2989005 @default.
- W3211196908 hasConceptScore W3211196908C33923547 @default.
- W3211196908 hasConceptScore W3211196908C41008148 @default.
- W3211196908 hasConceptScore W3211196908C49781872 @default.
- W3211196908 hasConceptScore W3211196908C55020928 @default.
- W3211196908 hasConceptScore W3211196908C71924100 @default.
- W3211196908 hasConceptScore W3211196908C8642999 @default.
- W3211196908 hasConceptScore W3211196908C9810830 @default.
- W3211196908 hasLocation W32111969081 @default.
- W3211196908 hasOpenAccess W3211196908 @default.
- W3211196908 hasPrimaryLocation W32111969081 @default.
- W3211196908 hasRelatedWork W1964562216 @default.
- W3211196908 hasRelatedWork W2058254206 @default.
- W3211196908 hasRelatedWork W2088077666 @default.
- W3211196908 hasRelatedWork W2140445473 @default.
- W3211196908 hasRelatedWork W2162119425 @default.
- W3211196908 hasRelatedWork W2252966306 @default.
- W3211196908 hasRelatedWork W2535820894 @default.
- W3211196908 hasRelatedWork W2544649344 @default.
- W3211196908 hasRelatedWork W2563903397 @default.
- W3211196908 hasRelatedWork W3211196908 @default.
- W3211196908 isParatext "false" @default.
- W3211196908 isRetracted "false" @default.
- W3211196908 magId "3211196908" @default.
- W3211196908 workType "article" @default.