Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211207242> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3211207242 endingPage "042048" @default.
- W3211207242 startingPage "042048" @default.
- W3211207242 abstract "Disaster prevention inspections, without overlooking the sources of falling rock, are essential for establishing efficient slope management and countermeasures. This study presents an automatic extraction method for rockfall sources, using remote sensing and artificial intelligence technology, to reduce overlooking during the inspection cycle and improve slope management efficiency. Current inspections have some factors that lead to object overlooking, one of them being the use of maps with low expression accuracy. Furthermore, biased criteria for the interpretation of inspection points in a desk study can play a part. Therefore, improving map accuracy and using quantified interpretation methods will improve the current inspection significantly. In such cases, the use of remote sensing technology is an effective measure. The utilization of airborne laser surveying and terrain analysis methods is effective for accurately acquiring the slope surface and topography. Airborne laser surveying is a system that takes measurements with multiple sensors mounted on an airplane, and the measurement data are represented by a collection of multiple points with three-dimensional coordinates. Furthermore, the terrain analysis method, which converts the survey data to two-dimensional raster images, extracts the necessary information, such as the ridge, valley, and elevation, of the slope. In this study, two-dimensional continuous wavelet transforms, used as a terrain analysis method suitable for rockfall extraction, are adopted to create a wavelet analysis map from survey data. Furthermore, to automatically extract the inspection points, the classification technology in artificial intelligence (AI) is applied to the terrain analysis map to extract the rockfall source in a desk study. A support vector machine (SVM) is a type of AI model that classifies based on training data and works by determining the best possible separation between the closest observations belonging to different classes. By applying this classification method, the rockfall source was extracted by performing object detection on the map. First, the entire map was divided into smaller patch images. Next, each patch image is classified as a rockfall source using the trained SVM. Finally, the area corresponding to the patch image, classified as the rockfall source, was drawn on the entire map. In this study, the performance of these integrated systems was verified in an area with a falling rock hazard. In the training process, wavelet analysis maps that reflect inventory data based on past inspection results were used. The extraction performance was evaluated by comparing the verification results with the inventory data and interpretation results based on the map features. Consequently, all learned rockfall source points were extracted, obtaining high-precision readability. Furthermore, the extraction performance of the same tendency inside the inventory range was shown in the range outside the inventory, acquiring a high versatility. Accordingly, we discuss the possibilities and issues for automatic extraction of the desk survey using the proposed method." @default.
- W3211207242 created "2021-11-08" @default.
- W3211207242 creator A5012711474 @default.
- W3211207242 creator A5013020061 @default.
- W3211207242 creator A5014041974 @default.
- W3211207242 creator A5020467415 @default.
- W3211207242 creator A5052491173 @default.
- W3211207242 date "2021-10-01" @default.
- W3211207242 modified "2023-09-25" @default.
- W3211207242 title "Automatic extraction of rockfall source based on terrain analysis map using support vector machine" @default.
- W3211207242 cites W1608462934 @default.
- W3211207242 cites W2017692381 @default.
- W3211207242 cites W2058082754 @default.
- W3211207242 cites W4239510810 @default.
- W3211207242 doi "https://doi.org/10.1088/1755-1315/861/4/042048" @default.
- W3211207242 hasPublicationYear "2021" @default.
- W3211207242 type Work @default.
- W3211207242 sameAs 3211207242 @default.
- W3211207242 citedByCount "0" @default.
- W3211207242 crossrefType "journal-article" @default.
- W3211207242 hasAuthorship W3211207242A5012711474 @default.
- W3211207242 hasAuthorship W3211207242A5013020061 @default.
- W3211207242 hasAuthorship W3211207242A5014041974 @default.
- W3211207242 hasAuthorship W3211207242A5020467415 @default.
- W3211207242 hasAuthorship W3211207242A5052491173 @default.
- W3211207242 hasBestOaLocation W32112072421 @default.
- W3211207242 hasConcept C124101348 @default.
- W3211207242 hasConcept C127313418 @default.
- W3211207242 hasConcept C154945302 @default.
- W3211207242 hasConcept C161840515 @default.
- W3211207242 hasConcept C181844469 @default.
- W3211207242 hasConcept C186295008 @default.
- W3211207242 hasConcept C187320778 @default.
- W3211207242 hasConcept C204665574 @default.
- W3211207242 hasConcept C205649164 @default.
- W3211207242 hasConcept C31972630 @default.
- W3211207242 hasConcept C41008148 @default.
- W3211207242 hasConcept C58640448 @default.
- W3211207242 hasConcept C62649853 @default.
- W3211207242 hasConceptScore W3211207242C124101348 @default.
- W3211207242 hasConceptScore W3211207242C127313418 @default.
- W3211207242 hasConceptScore W3211207242C154945302 @default.
- W3211207242 hasConceptScore W3211207242C161840515 @default.
- W3211207242 hasConceptScore W3211207242C181844469 @default.
- W3211207242 hasConceptScore W3211207242C186295008 @default.
- W3211207242 hasConceptScore W3211207242C187320778 @default.
- W3211207242 hasConceptScore W3211207242C204665574 @default.
- W3211207242 hasConceptScore W3211207242C205649164 @default.
- W3211207242 hasConceptScore W3211207242C31972630 @default.
- W3211207242 hasConceptScore W3211207242C41008148 @default.
- W3211207242 hasConceptScore W3211207242C58640448 @default.
- W3211207242 hasConceptScore W3211207242C62649853 @default.
- W3211207242 hasIssue "4" @default.
- W3211207242 hasLocation W32112072421 @default.
- W3211207242 hasOpenAccess W3211207242 @default.
- W3211207242 hasPrimaryLocation W32112072421 @default.
- W3211207242 hasRelatedWork W1891287906 @default.
- W3211207242 hasRelatedWork W1969923398 @default.
- W3211207242 hasRelatedWork W2162365431 @default.
- W3211207242 hasRelatedWork W2170917786 @default.
- W3211207242 hasRelatedWork W2383285980 @default.
- W3211207242 hasRelatedWork W2765136206 @default.
- W3211207242 hasRelatedWork W3082574750 @default.
- W3211207242 hasRelatedWork W3096542359 @default.
- W3211207242 hasRelatedWork W3159377854 @default.
- W3211207242 hasRelatedWork W4313401503 @default.
- W3211207242 hasVolume "861" @default.
- W3211207242 isParatext "false" @default.
- W3211207242 isRetracted "false" @default.
- W3211207242 magId "3211207242" @default.
- W3211207242 workType "article" @default.