Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211207797> ?p ?o ?g. }
- W3211207797 endingPage "110788" @default.
- W3211207797 startingPage "110788" @default.
- W3211207797 abstract "Bayesian optimization (BO) based on Gaussian process regression (GPR) is applied to different CFD (computational fluid dynamics) problems which can be of practical relevance. The problems are i) shape optimization in a lid-driven cavity to minimize or maximize the energy dissipation, ii) shape optimization of the wall of a channel flow in order to obtain a desired pressure-gradient distribution along the edge of the turbulent boundary layer formed on the other wall, and finally, iii) optimization of the controlling parameters of a spoiler-ice model to attain the aerodynamic characteristics of the airfoil with an actual surface ice. The diversity of the optimization problems, independence of the optimization approach from any adjoint information, the ease of employing different CFD solvers in the optimization loop, and more importantly, the relatively small number of the required flow simulations reveal the flexibility, efficiency, and versatility of the BO-GPR approach in CFD applications. It is shown that to ensure finding the global optimum of the design parameters of the size up to 8, less than 90 executions of the CFD solvers are needed. Furthermore, it is observed that the number of flow simulations does not significantly increase with the number of design parameters. The associated computational cost of these simulations can be affordable for many optimization cases with practical relevance." @default.
- W3211207797 created "2021-11-08" @default.
- W3211207797 creator A5001997189 @default.
- W3211207797 creator A5011924638 @default.
- W3211207797 creator A5035419854 @default.
- W3211207797 creator A5042373760 @default.
- W3211207797 creator A5049616413 @default.
- W3211207797 creator A5082915627 @default.
- W3211207797 date "2022-01-01" @default.
- W3211207797 modified "2023-10-15" @default.
- W3211207797 title "Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems" @default.
- W3211207797 cites W119168886 @default.
- W3211207797 cites W1510052597 @default.
- W3211207797 cites W1529817821 @default.
- W3211207797 cites W1553486041 @default.
- W3211207797 cites W1632204961 @default.
- W3211207797 cites W1857565089 @default.
- W3211207797 cites W1981515050 @default.
- W3211207797 cites W2025334865 @default.
- W3211207797 cites W2030796235 @default.
- W3211207797 cites W2041161270 @default.
- W3211207797 cites W2059004678 @default.
- W3211207797 cites W2067383151 @default.
- W3211207797 cites W2073470731 @default.
- W3211207797 cites W2076497301 @default.
- W3211207797 cites W2082067916 @default.
- W3211207797 cites W2110187357 @default.
- W3211207797 cites W2112311198 @default.
- W3211207797 cites W2155155203 @default.
- W3211207797 cites W2164094775 @default.
- W3211207797 cites W2167948695 @default.
- W3211207797 cites W2192203593 @default.
- W3211207797 cites W2238431993 @default.
- W3211207797 cites W2345668738 @default.
- W3211207797 cites W2479480265 @default.
- W3211207797 cites W2515586274 @default.
- W3211207797 cites W2524671925 @default.
- W3211207797 cites W2579523679 @default.
- W3211207797 cites W2618986055 @default.
- W3211207797 cites W2740626026 @default.
- W3211207797 cites W2747850731 @default.
- W3211207797 cites W2775411641 @default.
- W3211207797 cites W2811020507 @default.
- W3211207797 cites W2811395263 @default.
- W3211207797 cites W2913034831 @default.
- W3211207797 cites W2953268252 @default.
- W3211207797 cites W2963805801 @default.
- W3211207797 cites W2969262004 @default.
- W3211207797 cites W2972888283 @default.
- W3211207797 cites W2983833118 @default.
- W3211207797 cites W2989087448 @default.
- W3211207797 cites W2990243146 @default.
- W3211207797 cites W2996416664 @default.
- W3211207797 cites W3087999580 @default.
- W3211207797 cites W3100764577 @default.
- W3211207797 cites W3101185016 @default.
- W3211207797 cites W3102143361 @default.
- W3211207797 cites W3104884672 @default.
- W3211207797 cites W3168149661 @default.
- W3211207797 cites W4299884930 @default.
- W3211207797 doi "https://doi.org/10.1016/j.jcp.2021.110788" @default.
- W3211207797 hasPublicationYear "2022" @default.
- W3211207797 type Work @default.
- W3211207797 sameAs 3211207797 @default.
- W3211207797 citedByCount "22" @default.
- W3211207797 countsByYear W32112077972022 @default.
- W3211207797 countsByYear W32112077972023 @default.
- W3211207797 crossrefType "journal-article" @default.
- W3211207797 hasAuthorship W3211207797A5001997189 @default.
- W3211207797 hasAuthorship W3211207797A5011924638 @default.
- W3211207797 hasAuthorship W3211207797A5035419854 @default.
- W3211207797 hasAuthorship W3211207797A5042373760 @default.
- W3211207797 hasAuthorship W3211207797A5049616413 @default.
- W3211207797 hasAuthorship W3211207797A5082915627 @default.
- W3211207797 hasBestOaLocation W32112077971 @default.
- W3211207797 hasConcept C112124176 @default.
- W3211207797 hasConcept C121332964 @default.
- W3211207797 hasConcept C126255220 @default.
- W3211207797 hasConcept C127413603 @default.
- W3211207797 hasConcept C135628077 @default.
- W3211207797 hasConcept C137836250 @default.
- W3211207797 hasConcept C1633027 @default.
- W3211207797 hasConcept C164752517 @default.
- W3211207797 hasConcept C2524010 @default.
- W3211207797 hasConcept C2778049539 @default.
- W3211207797 hasConcept C29513896 @default.
- W3211207797 hasConcept C33923547 @default.
- W3211207797 hasConcept C38349280 @default.
- W3211207797 hasConcept C41008148 @default.
- W3211207797 hasConcept C57879066 @default.
- W3211207797 hasConcept C66938386 @default.
- W3211207797 hasConceptScore W3211207797C112124176 @default.
- W3211207797 hasConceptScore W3211207797C121332964 @default.
- W3211207797 hasConceptScore W3211207797C126255220 @default.
- W3211207797 hasConceptScore W3211207797C127413603 @default.
- W3211207797 hasConceptScore W3211207797C135628077 @default.
- W3211207797 hasConceptScore W3211207797C137836250 @default.
- W3211207797 hasConceptScore W3211207797C1633027 @default.