Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211226056> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3211226056 endingPage "408" @default.
- W3211226056 startingPage "382" @default.
- W3211226056 abstract "Purpose Density-based spatial clustering of applications with noise (DBSCAN) is the most commonly used density-based clustering algorithm, while it cannot be directly applied to the railway investment risk assessment. To overcome the shortcomings of calculation method and parameter limits of DBSCAN, this paper proposes a new algorithm called Improved Multiple Density-based Spatial clustering of Applications with Noise (IM-DBSCAN) based on the DBSCAN and rough set theory. Design/methodology/approach First, the authors develop an improved affinity propagation (AP) algorithm, which is then combined with the DBSCAN (hereinafter referred to as AP-DBSCAN for short) to improve the parameter setting and efficiency of the DBSCAN. Second, the IM-DBSCAN algorithm, which consists of the AP-DBSCAN and a modified rough set, is designed to investigate the railway investment risk. Finally, the IM-DBSCAN algorithm is tested on the China–Laos railway's investment risk assessment, and its performance is compared with other related algorithms. Findings The IM-DBSCAN algorithm is implemented on China–Laos railway's investment risk assessment and compares with other related algorithms. The clustering results validate that the AP-DBSCAN algorithm is feasible and efficient in terms of clustering accuracy and operating time. In addition, the experimental results also indicate that the IM-DBSCAN algorithm can be used as an effective method for the prospective risk assessment in railway investment. Originality/value This study proposes IM-DBSCAN algorithm that consists of the AP-DBSCAN and a modified rough set to study the railway investment risk. Different from the existing clustering algorithms, AP-DBSCAN put forward the density calculation method to simplify the process of optimizing DBSCAN parameters. Instead of using Euclidean distance approach, the cutoff distance method is introduced to improve the similarity measure for optimizing the parameters. The developed AP-DBSCAN is used to classify the China–Laos railway's investment risk indicators more accurately. Combined with a modified rough set, the IM-DBSCAN algorithm is proposed to analyze the railway investment risk assessment. The contributions of this study can be summarized as follows: (1) Based on AP, DBSCAN, an integrated methodology AP-DBSCAN, which considers improving the parameter setting and efficiency, is proposed to classify railway risk indicators. (2) As AP-DBSCAN is a risk classification model rather than a risk calculation model, an IM-DBSCAN algorithm that consists of the AP-DBSCAN and a modified rough set is proposed to assess the railway investment risk. (3) Taking the China–Laos railway as a real-life case study, the effectiveness and superiority of the proposed IM-DBSCAN algorithm are verified through a set of experiments compared with other state-of-the-art algorithms." @default.
- W3211226056 created "2021-11-08" @default.
- W3211226056 creator A5000779319 @default.
- W3211226056 creator A5004114916 @default.
- W3211226056 creator A5005084423 @default.
- W3211226056 creator A5031016328 @default.
- W3211226056 creator A5033861131 @default.
- W3211226056 creator A5055621875 @default.
- W3211226056 creator A5070288542 @default.
- W3211226056 date "2021-11-01" @default.
- W3211226056 modified "2023-10-18" @default.
- W3211226056 title "An improved density-based approach to risk assessment on railway investment" @default.
- W3211226056 cites W2011832962 @default.
- W3211226056 cites W2054449235 @default.
- W3211226056 cites W2055266411 @default.
- W3211226056 cites W2061034685 @default.
- W3211226056 cites W2084674986 @default.
- W3211226056 cites W2110020117 @default.
- W3211226056 cites W2126626732 @default.
- W3211226056 cites W2134866037 @default.
- W3211226056 cites W2143040521 @default.
- W3211226056 cites W2143451122 @default.
- W3211226056 cites W2149159862 @default.
- W3211226056 cites W2165232124 @default.
- W3211226056 cites W2276016576 @default.
- W3211226056 cites W2343075025 @default.
- W3211226056 cites W2343614814 @default.
- W3211226056 cites W2889384212 @default.
- W3211226056 cites W2896017664 @default.
- W3211226056 cites W2914397992 @default.
- W3211226056 cites W2915658286 @default.
- W3211226056 cites W2948899061 @default.
- W3211226056 cites W3003453726 @default.
- W3211226056 cites W3020965650 @default.
- W3211226056 cites W4255833381 @default.
- W3211226056 doi "https://doi.org/10.1108/dta-11-2020-0291" @default.
- W3211226056 hasPublicationYear "2021" @default.
- W3211226056 type Work @default.
- W3211226056 sameAs 3211226056 @default.
- W3211226056 citedByCount "2" @default.
- W3211226056 countsByYear W32112260562022 @default.
- W3211226056 countsByYear W32112260562023 @default.
- W3211226056 crossrefType "journal-article" @default.
- W3211226056 hasAuthorship W3211226056A5000779319 @default.
- W3211226056 hasAuthorship W3211226056A5004114916 @default.
- W3211226056 hasAuthorship W3211226056A5005084423 @default.
- W3211226056 hasAuthorship W3211226056A5031016328 @default.
- W3211226056 hasAuthorship W3211226056A5033861131 @default.
- W3211226056 hasAuthorship W3211226056A5055621875 @default.
- W3211226056 hasAuthorship W3211226056A5070288542 @default.
- W3211226056 hasConcept C11413529 @default.
- W3211226056 hasConcept C115961682 @default.
- W3211226056 hasConcept C124101348 @default.
- W3211226056 hasConcept C153180895 @default.
- W3211226056 hasConcept C154945302 @default.
- W3211226056 hasConcept C177264268 @default.
- W3211226056 hasConcept C199360897 @default.
- W3211226056 hasConcept C33704608 @default.
- W3211226056 hasConcept C41008148 @default.
- W3211226056 hasConcept C46576248 @default.
- W3211226056 hasConcept C73555534 @default.
- W3211226056 hasConcept C94641424 @default.
- W3211226056 hasConcept C99498987 @default.
- W3211226056 hasConceptScore W3211226056C11413529 @default.
- W3211226056 hasConceptScore W3211226056C115961682 @default.
- W3211226056 hasConceptScore W3211226056C124101348 @default.
- W3211226056 hasConceptScore W3211226056C153180895 @default.
- W3211226056 hasConceptScore W3211226056C154945302 @default.
- W3211226056 hasConceptScore W3211226056C177264268 @default.
- W3211226056 hasConceptScore W3211226056C199360897 @default.
- W3211226056 hasConceptScore W3211226056C33704608 @default.
- W3211226056 hasConceptScore W3211226056C41008148 @default.
- W3211226056 hasConceptScore W3211226056C46576248 @default.
- W3211226056 hasConceptScore W3211226056C73555534 @default.
- W3211226056 hasConceptScore W3211226056C94641424 @default.
- W3211226056 hasConceptScore W3211226056C99498987 @default.
- W3211226056 hasIssue "3" @default.
- W3211226056 hasLocation W32112260561 @default.
- W3211226056 hasOpenAccess W3211226056 @default.
- W3211226056 hasPrimaryLocation W32112260561 @default.
- W3211226056 hasRelatedWork W2186523764 @default.
- W3211226056 hasRelatedWork W2187492663 @default.
- W3211226056 hasRelatedWork W2330870411 @default.
- W3211226056 hasRelatedWork W2368219397 @default.
- W3211226056 hasRelatedWork W2503866109 @default.
- W3211226056 hasRelatedWork W2959625647 @default.
- W3211226056 hasRelatedWork W3004596345 @default.
- W3211226056 hasRelatedWork W3168814018 @default.
- W3211226056 hasRelatedWork W4290987788 @default.
- W3211226056 hasRelatedWork W2314379296 @default.
- W3211226056 hasVolume "56" @default.
- W3211226056 isParatext "false" @default.
- W3211226056 isRetracted "false" @default.
- W3211226056 magId "3211226056" @default.
- W3211226056 workType "article" @default.