Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211306593> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3211306593 abstract "Geoscience and seismology have utilized the most advanced technologies and equipment to monitor seismic events globally from the past few decades. With the enormous amount of data, modern GPU-powered deep learning presents a promising approach to analyze data and discover patterns. In recent years, there are plenty of successful deep learning models for picking seismic waves. However, forecasting extreme earthquakes, which can cause disasters, is still an underdeveloped topic in history. Relevant research in spatiotemporal dynamics mining and forecasting has revealed some successful predictions, a crucial topic in many scientific research fields. Most studies of them have many successful applications of using deep neural networks. In Geology and Earth science studies, earthquake prediction is one of the world’s most challenging problems, about which cutting-edge deep learning technologies may help discover some valuable patterns. In this project, we propose a deep learning modeling approach, namely EQPred, to mine spatiotemporal patterns from data to nowcast extreme earthquakes by discovering visual dynamics in regional coarse-grained spatial grids over time. In this modeling approach, we use synthetic deep learning neural networks with domain knowledge in geoscience and seismology to exploit earthquake patterns for prediction using convolutional long short-term memory neural networks. Our experiments show a strong correlation between location prediction and magnitude prediction for earthquakes in Southern California. Ablation studies and visualization validate the effectiveness of the proposed modeling method." @default.
- W3211306593 created "2021-11-08" @default.
- W3211306593 creator A5078240493 @default.
- W3211306593 creator A5087900743 @default.
- W3211306593 date "2021-09-01" @default.
- W3211306593 modified "2023-10-16" @default.
- W3211306593 title "Spatiotemporal Pattern Mining for Nowcasting Extreme Earthquakes in Southern California" @default.
- W3211306593 cites W1903029394 @default.
- W3211306593 cites W1959608418 @default.
- W3211306593 cites W1985164990 @default.
- W3211306593 cites W2064675550 @default.
- W3211306593 cites W2080795733 @default.
- W3211306593 cites W2143554369 @default.
- W3211306593 cites W2194775991 @default.
- W3211306593 cites W2253820264 @default.
- W3211306593 cites W2296325723 @default.
- W3211306593 cites W2302255633 @default.
- W3211306593 cites W2609874355 @default.
- W3211306593 cites W2726456930 @default.
- W3211306593 cites W2751802138 @default.
- W3211306593 cites W2904832339 @default.
- W3211306593 cites W2919115771 @default.
- W3211306593 cites W2949382160 @default.
- W3211306593 cites W2963299740 @default.
- W3211306593 cites W2963358464 @default.
- W3211306593 cites W2963402657 @default.
- W3211306593 cites W2964151830 @default.
- W3211306593 cites W2992226973 @default.
- W3211306593 cites W2996451395 @default.
- W3211306593 cites W3047855151 @default.
- W3211306593 cites W3088611441 @default.
- W3211306593 cites W587973104 @default.
- W3211306593 doi "https://doi.org/10.1109/escience51609.2021.00020" @default.
- W3211306593 hasPublicationYear "2021" @default.
- W3211306593 type Work @default.
- W3211306593 sameAs 3211306593 @default.
- W3211306593 citedByCount "1" @default.
- W3211306593 countsByYear W32113065932023 @default.
- W3211306593 crossrefType "proceedings-article" @default.
- W3211306593 hasAuthorship W3211306593A5078240493 @default.
- W3211306593 hasAuthorship W3211306593A5087900743 @default.
- W3211306593 hasBestOaLocation W32113065932 @default.
- W3211306593 hasConcept C108583219 @default.
- W3211306593 hasConcept C111368507 @default.
- W3211306593 hasConcept C119857082 @default.
- W3211306593 hasConcept C127313418 @default.
- W3211306593 hasConcept C154945302 @default.
- W3211306593 hasConcept C165205528 @default.
- W3211306593 hasConcept C165696696 @default.
- W3211306593 hasConcept C2522767166 @default.
- W3211306593 hasConcept C2781013037 @default.
- W3211306593 hasConcept C36464697 @default.
- W3211306593 hasConcept C38652104 @default.
- W3211306593 hasConcept C41008148 @default.
- W3211306593 hasConcept C50644808 @default.
- W3211306593 hasConcept C81363708 @default.
- W3211306593 hasConceptScore W3211306593C108583219 @default.
- W3211306593 hasConceptScore W3211306593C111368507 @default.
- W3211306593 hasConceptScore W3211306593C119857082 @default.
- W3211306593 hasConceptScore W3211306593C127313418 @default.
- W3211306593 hasConceptScore W3211306593C154945302 @default.
- W3211306593 hasConceptScore W3211306593C165205528 @default.
- W3211306593 hasConceptScore W3211306593C165696696 @default.
- W3211306593 hasConceptScore W3211306593C2522767166 @default.
- W3211306593 hasConceptScore W3211306593C2781013037 @default.
- W3211306593 hasConceptScore W3211306593C36464697 @default.
- W3211306593 hasConceptScore W3211306593C38652104 @default.
- W3211306593 hasConceptScore W3211306593C41008148 @default.
- W3211306593 hasConceptScore W3211306593C50644808 @default.
- W3211306593 hasConceptScore W3211306593C81363708 @default.
- W3211306593 hasLocation W32113065931 @default.
- W3211306593 hasLocation W32113065932 @default.
- W3211306593 hasOpenAccess W3211306593 @default.
- W3211306593 hasPrimaryLocation W32113065931 @default.
- W3211306593 hasRelatedWork W2337926734 @default.
- W3211306593 hasRelatedWork W2799614062 @default.
- W3211306593 hasRelatedWork W2963958939 @default.
- W3211306593 hasRelatedWork W3173182854 @default.
- W3211306593 hasRelatedWork W4311257506 @default.
- W3211306593 hasRelatedWork W4312417841 @default.
- W3211306593 hasRelatedWork W4319994054 @default.
- W3211306593 hasRelatedWork W4320802194 @default.
- W3211306593 hasRelatedWork W4321369474 @default.
- W3211306593 hasRelatedWork W4327499916 @default.
- W3211306593 isParatext "false" @default.
- W3211306593 isRetracted "false" @default.
- W3211306593 magId "3211306593" @default.
- W3211306593 workType "article" @default.