Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211324852> ?p ?o ?g. }
- W3211324852 abstract "Machine learning materials properties measured by experiments is valuable yet difficult due to the limited amount of experimental data. In this work, we use a multi-fidelity random forest model to learn the experimental formation enthalpy of materials with prediction accuracy higher than the empirically corrected PBE functional (PBEfe) and meta-GGA functional (SCAN), and it outperforms the hotly studied deep neural-network based representation learning and transfer learning. We then use the model to calibrate the DFT formation enthalpy in the Materials Project database, and discover materials with underestimated stability. The multi-fidelity model is also used as a data-mining approach to find how DFT deviates from experiments by the explaining the model output." @default.
- W3211324852 created "2021-11-08" @default.
- W3211324852 creator A5034044899 @default.
- W3211324852 creator A5037666565 @default.
- W3211324852 creator A5046677864 @default.
- W3211324852 creator A5051434566 @default.
- W3211324852 creator A5077562460 @default.
- W3211324852 creator A5083309623 @default.
- W3211324852 date "2021-10-25" @default.
- W3211324852 modified "2023-09-24" @default.
- W3211324852 title "Calibrating DFT formation enthalpy calculations by multi-fidelity machine learning" @default.
- W3211324852 cites W1450903355 @default.
- W3211324852 cites W1971044734 @default.
- W3211324852 cites W1972401082 @default.
- W3211324852 cites W1981368803 @default.
- W3211324852 cites W1982210646 @default.
- W3211324852 cites W2028239764 @default.
- W3211324852 cites W2028328856 @default.
- W3211324852 cites W2052147226 @default.
- W3211324852 cites W2057677237 @default.
- W3211324852 cites W2061455647 @default.
- W3211324852 cites W2065583574 @default.
- W3211324852 cites W2069313223 @default.
- W3211324852 cites W2087645345 @default.
- W3211324852 cites W2097365790 @default.
- W3211324852 cites W2101234009 @default.
- W3211324852 cites W2110644663 @default.
- W3211324852 cites W2117363206 @default.
- W3211324852 cites W2144625753 @default.
- W3211324852 cites W2162653998 @default.
- W3211324852 cites W2230728100 @default.
- W3211324852 cites W2258843399 @default.
- W3211324852 cites W2278970271 @default.
- W3211324852 cites W2313966941 @default.
- W3211324852 cites W2315306802 @default.
- W3211324852 cites W2329908465 @default.
- W3211324852 cites W2395579298 @default.
- W3211324852 cites W2413434998 @default.
- W3211324852 cites W2464725281 @default.
- W3211324852 cites W2509907061 @default.
- W3211324852 cites W2551323975 @default.
- W3211324852 cites W2559612475 @default.
- W3211324852 cites W2563751252 @default.
- W3211324852 cites W2565052313 @default.
- W3211324852 cites W2593252896 @default.
- W3211324852 cites W2734437663 @default.
- W3211324852 cites W2765453854 @default.
- W3211324852 cites W2766856748 @default.
- W3211324852 cites W2768278023 @default.
- W3211324852 cites W2778051509 @default.
- W3211324852 cites W2790658943 @default.
- W3211324852 cites W2792575172 @default.
- W3211324852 cites W2793091350 @default.
- W3211324852 cites W2800722845 @default.
- W3211324852 cites W2801403847 @default.
- W3211324852 cites W2804431384 @default.
- W3211324852 cites W2891639453 @default.
- W3211324852 cites W2900502776 @default.
- W3211324852 cites W2901005646 @default.
- W3211324852 cites W2902452488 @default.
- W3211324852 cites W2904527725 @default.
- W3211324852 cites W2913594191 @default.
- W3211324852 cites W2921415619 @default.
- W3211324852 cites W2921533983 @default.
- W3211324852 cites W2923454387 @default.
- W3211324852 cites W2949015218 @default.
- W3211324852 cites W2952587573 @default.
- W3211324852 cites W2954088480 @default.
- W3211324852 cites W2963207368 @default.
- W3211324852 cites W2963657244 @default.
- W3211324852 cites W2966683548 @default.
- W3211324852 cites W2976102057 @default.
- W3211324852 cites W2978032524 @default.
- W3211324852 cites W2978707075 @default.
- W3211324852 cites W2981672083 @default.
- W3211324852 cites W2990015413 @default.
- W3211324852 cites W2994650566 @default.
- W3211324852 cites W2999615587 @default.
- W3211324852 cites W3002779457 @default.
- W3211324852 cites W3034692868 @default.
- W3211324852 cites W3039218083 @default.
- W3211324852 cites W3083599250 @default.
- W3211324852 cites W3099236691 @default.
- W3211324852 cites W3099803468 @default.
- W3211324852 cites W3101477835 @default.
- W3211324852 cites W3103227378 @default.
- W3211324852 cites W3106400375 @default.
- W3211324852 cites W3119113486 @default.
- W3211324852 cites W3121984752 @default.
- W3211324852 cites W3134405767 @default.
- W3211324852 cites W3139518268 @default.
- W3211324852 cites W3155038719 @default.
- W3211324852 cites W3163995736 @default.
- W3211324852 cites W3178883367 @default.
- W3211324852 doi "https://doi.org/10.48550/arxiv.2110.13308" @default.
- W3211324852 hasPublicationYear "2021" @default.
- W3211324852 type Work @default.
- W3211324852 sameAs 3211324852 @default.
- W3211324852 citedByCount "0" @default.
- W3211324852 crossrefType "posted-content" @default.