Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211326283> ?p ?o ?g. }
- W3211326283 abstract "The so-called attention is an efficient mechanism to improve the performance of convolutional neural networks. It uses contextual information to recalibrate the input to strengthen the propagation of informative features. However, the majority of the attention mechanisms only consider either local or global contextual information, which is singular to extract features. Moreover, many existing mechanisms directly use the contextual information to recalibrate the input, which unilaterally enhances the propagation of the informative features, but does not suppress the useless ones. This paper proposes a new attention mechanism module based on the correlation between local and global contextual information and we name this correlation as confidence. The novel attention mechanism extracts the local and global contextual information simultaneously, and calculates the confidence between them, then uses this confidence to recalibrate the input pixels. The extraction of local and global contextual information increases the diversity of features. The recalibration with confidence suppresses useless information while enhancing the informative one with fewer parameters. We use CIFAR-10 and CIFAR-100 in our experiments and explore the performance of our method's components by sufficient ablation studies. Finally, we compare our method with a various state-of-the-art convolutional neural networks and the results show that our method completely surpasses these models. We implement ConAM with the Python library, Pytorch, and the code and models will be publicly available." @default.
- W3211326283 created "2021-11-08" @default.
- W3211326283 creator A5012475436 @default.
- W3211326283 creator A5063214931 @default.
- W3211326283 creator A5071113173 @default.
- W3211326283 date "2021-10-27" @default.
- W3211326283 modified "2023-10-17" @default.
- W3211326283 title "ConAM: Confidence Attention Module for Convolutional Neural Networks" @default.
- W3211326283 cites W1799366690 @default.
- W3211326283 cites W2095705004 @default.
- W3211326283 cites W2097117768 @default.
- W3211326283 cites W2123045220 @default.
- W3211326283 cites W2163605009 @default.
- W3211326283 cites W2194775991 @default.
- W3211326283 cites W2401231614 @default.
- W3211326283 cites W2408279554 @default.
- W3211326283 cites W2531409750 @default.
- W3211326283 cites W2549139847 @default.
- W3211326283 cites W2553303224 @default.
- W3211326283 cites W2594529350 @default.
- W3211326283 cites W2606006859 @default.
- W3211326283 cites W2612445135 @default.
- W3211326283 cites W2746314669 @default.
- W3211326283 cites W2782417188 @default.
- W3211326283 cites W2796265726 @default.
- W3211326283 cites W2884585870 @default.
- W3211326283 cites W2887063112 @default.
- W3211326283 cites W2898732869 @default.
- W3211326283 cites W2899206823 @default.
- W3211326283 cites W2900654890 @default.
- W3211326283 cites W2901407627 @default.
- W3211326283 cites W2943991646 @default.
- W3211326283 cites W2951886768 @default.
- W3211326283 cites W2953308748 @default.
- W3211326283 cites W2962835968 @default.
- W3211326283 cites W2963446712 @default.
- W3211326283 cites W2963536136 @default.
- W3211326283 cites W2963840672 @default.
- W3211326283 cites W2963843116 @default.
- W3211326283 cites W2972188071 @default.
- W3211326283 cites W2981868774 @default.
- W3211326283 cites W2988916019 @default.
- W3211326283 cites W2998457557 @default.
- W3211326283 cites W2998508940 @default.
- W3211326283 cites W2998784361 @default.
- W3211326283 cites W3015003552 @default.
- W3211326283 cites W3033927182 @default.
- W3211326283 cites W3034552520 @default.
- W3211326283 cites W3035050607 @default.
- W3211326283 cites W3038203375 @default.
- W3211326283 cites W3118608800 @default.
- W3211326283 cites W3127284993 @default.
- W3211326283 cites W3164851952 @default.
- W3211326283 cites W3192682950 @default.
- W3211326283 doi "https://doi.org/10.48550/arxiv.2110.14369" @default.
- W3211326283 hasPublicationYear "2021" @default.
- W3211326283 type Work @default.
- W3211326283 sameAs 3211326283 @default.
- W3211326283 citedByCount "0" @default.
- W3211326283 crossrefType "posted-content" @default.
- W3211326283 hasAuthorship W3211326283A5012475436 @default.
- W3211326283 hasAuthorship W3211326283A5063214931 @default.
- W3211326283 hasAuthorship W3211326283A5071113173 @default.
- W3211326283 hasBestOaLocation W32113262831 @default.
- W3211326283 hasConcept C111472728 @default.
- W3211326283 hasConcept C111919701 @default.
- W3211326283 hasConcept C119857082 @default.
- W3211326283 hasConcept C138885662 @default.
- W3211326283 hasConcept C154945302 @default.
- W3211326283 hasConcept C41008148 @default.
- W3211326283 hasConcept C50644808 @default.
- W3211326283 hasConcept C519991488 @default.
- W3211326283 hasConcept C81363708 @default.
- W3211326283 hasConcept C89611455 @default.
- W3211326283 hasConceptScore W3211326283C111472728 @default.
- W3211326283 hasConceptScore W3211326283C111919701 @default.
- W3211326283 hasConceptScore W3211326283C119857082 @default.
- W3211326283 hasConceptScore W3211326283C138885662 @default.
- W3211326283 hasConceptScore W3211326283C154945302 @default.
- W3211326283 hasConceptScore W3211326283C41008148 @default.
- W3211326283 hasConceptScore W3211326283C50644808 @default.
- W3211326283 hasConceptScore W3211326283C519991488 @default.
- W3211326283 hasConceptScore W3211326283C81363708 @default.
- W3211326283 hasConceptScore W3211326283C89611455 @default.
- W3211326283 hasLocation W32113262831 @default.
- W3211326283 hasOpenAccess W3211326283 @default.
- W3211326283 hasPrimaryLocation W32113262831 @default.
- W3211326283 hasRelatedWork W2337926734 @default.
- W3211326283 hasRelatedWork W2891993883 @default.
- W3211326283 hasRelatedWork W3027997911 @default.
- W3211326283 hasRelatedWork W4285815787 @default.
- W3211326283 hasRelatedWork W4287776258 @default.
- W3211326283 hasRelatedWork W4312501200 @default.
- W3211326283 hasRelatedWork W4312949351 @default.
- W3211326283 hasRelatedWork W4313050734 @default.
- W3211326283 hasRelatedWork W4366224123 @default.
- W3211326283 hasRelatedWork W1629725936 @default.
- W3211326283 isParatext "false" @default.
- W3211326283 isRetracted "false" @default.
- W3211326283 magId "3211326283" @default.