Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211328428> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3211328428 abstract "World Health Organization (WHO) has reported that breast cancer is the most often found cancer in women and it is adversary affecting millions of women all around the world. Early detection and real-time screening can immensely assist the patient. Mitotic nuclei detection in breast histopathology images plays a critical function to evaluate the aggressiveness of the cancer malignancy. Cancer is identified by pathologists by analyzing histopathology images of tissues and determines numerous biomarkers. Since there is only minute variation among mitotic and not mitotic cells, this procedure is tedious, time-consuming, and instinctive. Various image processing techniques and deep learning models had been proposed to automate the procedure of detecting mitotic cells from the histopathology images. Traditional techniques commonly perform nuclei segmentation followed by classification which calls for immoderate computational resources. These models also lack expected accuracy due to the shortage of proper balanced datasets and errors during image staining. In this paper, we define the challenges as an object detection task, wherein the mitotic nuclei are directly predicted without nuclei segmentation in a single step using YOLOv4, which is a fast-operating object detection model. The model was trained with 506 mitosis instances from the openly available MITOS-ATYPIA-14 grand challenge dataset that comprises hematoxylin and eosin (H&E) stained breast histopathology images annotated by experienced pathologists. The outcome suggests that the YOLOv4 model with RGB images as input offers an F-measure of 0.73 and can be used as a dependable and much less computationally exhaustive approach among the prevailing ones." @default.
- W3211328428 created "2021-11-08" @default.
- W3211328428 creator A5013522791 @default.
- W3211328428 creator A5030592678 @default.
- W3211328428 creator A5052865715 @default.
- W3211328428 creator A5061383043 @default.
- W3211328428 creator A5083555354 @default.
- W3211328428 date "2021-07-06" @default.
- W3211328428 modified "2023-10-10" @default.
- W3211328428 title "Mitotic Nuclei Detection in Breast Histopathology Images using YOLOv4" @default.
- W3211328428 cites W2122394460 @default.
- W3211328428 cites W2605850958 @default.
- W3211328428 cites W2771248105 @default.
- W3211328428 cites W2942232960 @default.
- W3211328428 cites W2963037989 @default.
- W3211328428 cites W2991430586 @default.
- W3211328428 cites W3095047349 @default.
- W3211328428 doi "https://doi.org/10.1109/icccnt51525.2021.9579969" @default.
- W3211328428 hasPublicationYear "2021" @default.
- W3211328428 type Work @default.
- W3211328428 sameAs 3211328428 @default.
- W3211328428 citedByCount "9" @default.
- W3211328428 countsByYear W32113284282022 @default.
- W3211328428 countsByYear W32113284282023 @default.
- W3211328428 crossrefType "proceedings-article" @default.
- W3211328428 hasAuthorship W3211328428A5013522791 @default.
- W3211328428 hasAuthorship W3211328428A5030592678 @default.
- W3211328428 hasAuthorship W3211328428A5052865715 @default.
- W3211328428 hasAuthorship W3211328428A5061383043 @default.
- W3211328428 hasAuthorship W3211328428A5083555354 @default.
- W3211328428 hasConcept C121608353 @default.
- W3211328428 hasConcept C124504099 @default.
- W3211328428 hasConcept C126322002 @default.
- W3211328428 hasConcept C142724271 @default.
- W3211328428 hasConcept C153180895 @default.
- W3211328428 hasConcept C154945302 @default.
- W3211328428 hasConcept C2777522853 @default.
- W3211328428 hasConcept C41008148 @default.
- W3211328428 hasConcept C530470458 @default.
- W3211328428 hasConcept C544855455 @default.
- W3211328428 hasConcept C71924100 @default.
- W3211328428 hasConcept C89600930 @default.
- W3211328428 hasConceptScore W3211328428C121608353 @default.
- W3211328428 hasConceptScore W3211328428C124504099 @default.
- W3211328428 hasConceptScore W3211328428C126322002 @default.
- W3211328428 hasConceptScore W3211328428C142724271 @default.
- W3211328428 hasConceptScore W3211328428C153180895 @default.
- W3211328428 hasConceptScore W3211328428C154945302 @default.
- W3211328428 hasConceptScore W3211328428C2777522853 @default.
- W3211328428 hasConceptScore W3211328428C41008148 @default.
- W3211328428 hasConceptScore W3211328428C530470458 @default.
- W3211328428 hasConceptScore W3211328428C544855455 @default.
- W3211328428 hasConceptScore W3211328428C71924100 @default.
- W3211328428 hasConceptScore W3211328428C89600930 @default.
- W3211328428 hasLocation W32113284281 @default.
- W3211328428 hasOpenAccess W3211328428 @default.
- W3211328428 hasPrimaryLocation W32113284281 @default.
- W3211328428 hasRelatedWork W134976887 @default.
- W3211328428 hasRelatedWork W1582206143 @default.
- W3211328428 hasRelatedWork W1840273037 @default.
- W3211328428 hasRelatedWork W2138214894 @default.
- W3211328428 hasRelatedWork W2464972745 @default.
- W3211328428 hasRelatedWork W2549765251 @default.
- W3211328428 hasRelatedWork W2734888972 @default.
- W3211328428 hasRelatedWork W3027394838 @default.
- W3211328428 hasRelatedWork W3161321444 @default.
- W3211328428 hasRelatedWork W4376624981 @default.
- W3211328428 isParatext "false" @default.
- W3211328428 isRetracted "false" @default.
- W3211328428 magId "3211328428" @default.
- W3211328428 workType "article" @default.