Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211336467> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3211336467 abstract "A major part of human scientific endeavour aims at making causal inferences of observed phenomena. While some of the studies conducted are experimental, others are observational, the latter often making use of recorded data. Since temporal data can be easily acquired and stored in today’s world, time-series causality estimation measures have come into wide use across a range of disciplines such as neuroscience, earth science and econometrics. In this context, model-free/data-driven methods for causality estimation are extremely useful, as the underlying model generating the data is often unknown. However, existing data-driven measures such as Granger Causality and Transfer Entropy impose strong statistical assumptions on the data and can only estimate causality by associational means. Associational causality, being the most rudimentary level of causality has several limitations. In this thesis, we propose a novel Interventional Complexity Causality scheme for time-series measurements so as to capture a higher level of causality based on intervention which until now could be inferred only through model-based measures. Based on this interventional scheme, we formulate a Compression-Complexity Causality (CCC) measure that is rigorously tested on simulations of stochastic and deterministic systems and shown to overcome the limitations of existing measures. CCC is then applied to infer causal relations from real data mainly in the domain of neuroscience. These include the study of brain connectivity in human subjects performing a motor task and a study to distinguish between awake and anaesthesia states in monkeys using electrophysiological brain recordings. Through theoretical and empirical advances in causality testing, the thesis also makes contributions to a number of allied disciplines. A causal perspective is given for the ubiquitous phenomenon of chaotic synchronization. One of the major contributions in this regard is the introduction of the notion of Causal Stability and formulation (with proof) of a novel Causal Stability Synchronization Theorem which gives a condition for complete synchronization of coupled chaotic systems. Further, we propose and test for techniques to analyse causality between sparse signals using compressed sensing. A real application is demonstrated for the case of sparse neuronal spike trains recorded from rat prefrontal cortex. The area of temporal-reversibility detection of time-series is also closely linked to the domain of causality testing. We develop and test a new method to check for time-reversibility of processes and explore the behaviour of causality measures on coupled time-reversed processes." @default.
- W3211336467 created "2021-11-08" @default.
- W3211336467 creator A5090695332 @default.
- W3211336467 date "2021-01-01" @default.
- W3211336467 modified "2023-09-26" @default.
- W3211336467 title "Theoretical and Experimental Investigations into Causality, its Measures and Applications" @default.
- W3211336467 hasPublicationYear "2021" @default.
- W3211336467 type Work @default.
- W3211336467 sameAs 3211336467 @default.
- W3211336467 citedByCount "0" @default.
- W3211336467 crossrefType "dissertation" @default.
- W3211336467 hasAuthorship W3211336467A5090695332 @default.
- W3211336467 hasConcept C105795698 @default.
- W3211336467 hasConcept C115086926 @default.
- W3211336467 hasConcept C11671645 @default.
- W3211336467 hasConcept C119857082 @default.
- W3211336467 hasConcept C121332964 @default.
- W3211336467 hasConcept C129824826 @default.
- W3211336467 hasConcept C149782125 @default.
- W3211336467 hasConcept C154945302 @default.
- W3211336467 hasConcept C15744967 @default.
- W3211336467 hasConcept C166957645 @default.
- W3211336467 hasConcept C169760540 @default.
- W3211336467 hasConcept C169900460 @default.
- W3211336467 hasConcept C182049051 @default.
- W3211336467 hasConcept C205649164 @default.
- W3211336467 hasConcept C2522767166 @default.
- W3211336467 hasConcept C2779343474 @default.
- W3211336467 hasConcept C33923547 @default.
- W3211336467 hasConcept C41008148 @default.
- W3211336467 hasConcept C62520636 @default.
- W3211336467 hasConcept C64357122 @default.
- W3211336467 hasConcept C9679016 @default.
- W3211336467 hasConceptScore W3211336467C105795698 @default.
- W3211336467 hasConceptScore W3211336467C115086926 @default.
- W3211336467 hasConceptScore W3211336467C11671645 @default.
- W3211336467 hasConceptScore W3211336467C119857082 @default.
- W3211336467 hasConceptScore W3211336467C121332964 @default.
- W3211336467 hasConceptScore W3211336467C129824826 @default.
- W3211336467 hasConceptScore W3211336467C149782125 @default.
- W3211336467 hasConceptScore W3211336467C154945302 @default.
- W3211336467 hasConceptScore W3211336467C15744967 @default.
- W3211336467 hasConceptScore W3211336467C166957645 @default.
- W3211336467 hasConceptScore W3211336467C169760540 @default.
- W3211336467 hasConceptScore W3211336467C169900460 @default.
- W3211336467 hasConceptScore W3211336467C182049051 @default.
- W3211336467 hasConceptScore W3211336467C205649164 @default.
- W3211336467 hasConceptScore W3211336467C2522767166 @default.
- W3211336467 hasConceptScore W3211336467C2779343474 @default.
- W3211336467 hasConceptScore W3211336467C33923547 @default.
- W3211336467 hasConceptScore W3211336467C41008148 @default.
- W3211336467 hasConceptScore W3211336467C62520636 @default.
- W3211336467 hasConceptScore W3211336467C64357122 @default.
- W3211336467 hasConceptScore W3211336467C9679016 @default.
- W3211336467 hasLocation W32113364671 @default.
- W3211336467 hasOpenAccess W3211336467 @default.
- W3211336467 hasPrimaryLocation W32113364671 @default.
- W3211336467 hasRelatedWork W119755877 @default.
- W3211336467 hasRelatedWork W146006945 @default.
- W3211336467 hasRelatedWork W1505854877 @default.
- W3211336467 hasRelatedWork W1584306994 @default.
- W3211336467 hasRelatedWork W1636081627 @default.
- W3211336467 hasRelatedWork W1742030380 @default.
- W3211336467 hasRelatedWork W197458784 @default.
- W3211336467 hasRelatedWork W2046433577 @default.
- W3211336467 hasRelatedWork W2071894919 @default.
- W3211336467 hasRelatedWork W2113762408 @default.
- W3211336467 hasRelatedWork W2117259173 @default.
- W3211336467 hasRelatedWork W2157724659 @default.
- W3211336467 hasRelatedWork W2330986605 @default.
- W3211336467 hasRelatedWork W2744112845 @default.
- W3211336467 hasRelatedWork W2928587905 @default.
- W3211336467 hasRelatedWork W2959642935 @default.
- W3211336467 hasRelatedWork W3085320075 @default.
- W3211336467 hasRelatedWork W3132577852 @default.
- W3211336467 hasRelatedWork W3137959752 @default.
- W3211336467 hasRelatedWork W67153702 @default.
- W3211336467 isParatext "false" @default.
- W3211336467 isRetracted "false" @default.
- W3211336467 magId "3211336467" @default.
- W3211336467 workType "dissertation" @default.