Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211349623> ?p ?o ?g. }
- W3211349623 endingPage "16" @default.
- W3211349623 startingPage "1" @default.
- W3211349623 abstract "Food quality and safety issues occurred frequently in recent years, which have attracted more and more attention of social and international organizations. Considering the increased quality risk in the food supply chain, many researchers have applied various information technologies to develop real-time risk identification and traceability systems (RITSs) for preferable food safety guarantee. This paper presents an innovative approach by utilizing the deep-stacking network method for hazardous risk identification, which relies on massive multisource data monitored by the Internet of Things timely in the whole food supply chain. The aim of the proposed method is to help managers and operators in food enterprises to find accurate risk levels of food security in advance and to provide regulatory authorities and consumers with potential rules for better decision-making, thereby maintaining the safety and sustainability of food product supply. The verification experiments show that the proposed method has the best performance in terms of prediction accuracy up to 97.62%, meanwhile achieves the appropriate model parameters only up to 211.26 megabytes. Moreover, the case analysis is implemented to illustrate the outperforming performance of the proposed method in risk level identification. It can effectively enhance the RITS ability for assuring food supply chain security and attaining multiple cooperation between regulators, enterprises, and consumers." @default.
- W3211349623 created "2021-11-22" @default.
- W3211349623 creator A5025536472 @default.
- W3211349623 creator A5031227420 @default.
- W3211349623 creator A5037831830 @default.
- W3211349623 creator A5065800868 @default.
- W3211349623 creator A5073921436 @default.
- W3211349623 creator A5077399002 @default.
- W3211349623 creator A5086107358 @default.
- W3211349623 date "2021-11-10" @default.
- W3211349623 modified "2023-10-15" @default.
- W3211349623 title "Deep-Stacking Network Approach by Multisource Data Mining for Hazardous Risk Identification in IoT-Based Intelligent Food Management Systems" @default.
- W3211349623 cites W1784708098 @default.
- W3211349623 cites W2016015925 @default.
- W3211349623 cites W2031257398 @default.
- W3211349623 cites W2042297527 @default.
- W3211349623 cites W2076740390 @default.
- W3211349623 cites W2194775991 @default.
- W3211349623 cites W2228157907 @default.
- W3211349623 cites W2299372648 @default.
- W3211349623 cites W2323294207 @default.
- W3211349623 cites W2401247193 @default.
- W3211349623 cites W2417406719 @default.
- W3211349623 cites W2534105431 @default.
- W3211349623 cites W2771079899 @default.
- W3211349623 cites W2794284562 @default.
- W3211349623 cites W2806318817 @default.
- W3211349623 cites W2883590416 @default.
- W3211349623 cites W2891675219 @default.
- W3211349623 cites W2902643018 @default.
- W3211349623 cites W2915594101 @default.
- W3211349623 cites W2919842188 @default.
- W3211349623 cites W2941416737 @default.
- W3211349623 cites W2942498809 @default.
- W3211349623 cites W2947231938 @default.
- W3211349623 cites W2952858199 @default.
- W3211349623 cites W2955285339 @default.
- W3211349623 cites W2962847658 @default.
- W3211349623 cites W2965434755 @default.
- W3211349623 cites W2969522893 @default.
- W3211349623 cites W2984342008 @default.
- W3211349623 cites W3004423851 @default.
- W3211349623 cites W3008279115 @default.
- W3211349623 cites W3010421437 @default.
- W3211349623 cites W3015049578 @default.
- W3211349623 cites W3015277501 @default.
- W3211349623 cites W3035815732 @default.
- W3211349623 cites W3092527948 @default.
- W3211349623 cites W3096319458 @default.
- W3211349623 cites W3107903098 @default.
- W3211349623 cites W3120207005 @default.
- W3211349623 cites W3126730904 @default.
- W3211349623 cites W3136018460 @default.
- W3211349623 cites W3152830573 @default.
- W3211349623 cites W4232714830 @default.
- W3211349623 doi "https://doi.org/10.1155/2021/1194565" @default.
- W3211349623 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8598327" @default.
- W3211349623 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34804137" @default.
- W3211349623 hasPublicationYear "2021" @default.
- W3211349623 type Work @default.
- W3211349623 sameAs 3211349623 @default.
- W3211349623 citedByCount "57" @default.
- W3211349623 countsByYear W32113496232022 @default.
- W3211349623 countsByYear W32113496232023 @default.
- W3211349623 crossrefType "journal-article" @default.
- W3211349623 hasAuthorship W3211349623A5025536472 @default.
- W3211349623 hasAuthorship W3211349623A5031227420 @default.
- W3211349623 hasAuthorship W3211349623A5037831830 @default.
- W3211349623 hasAuthorship W3211349623A5065800868 @default.
- W3211349623 hasAuthorship W3211349623A5073921436 @default.
- W3211349623 hasAuthorship W3211349623A5077399002 @default.
- W3211349623 hasAuthorship W3211349623A5086107358 @default.
- W3211349623 hasBestOaLocation W32113496231 @default.
- W3211349623 hasConcept C10138342 @default.
- W3211349623 hasConcept C108713360 @default.
- W3211349623 hasConcept C111472728 @default.
- W3211349623 hasConcept C112930515 @default.
- W3211349623 hasConcept C115903868 @default.
- W3211349623 hasConcept C116834253 @default.
- W3211349623 hasConcept C118518473 @default.
- W3211349623 hasConcept C138885662 @default.
- W3211349623 hasConcept C142724271 @default.
- W3211349623 hasConcept C144133560 @default.
- W3211349623 hasConcept C153876917 @default.
- W3211349623 hasConcept C162853370 @default.
- W3211349623 hasConcept C18903297 @default.
- W3211349623 hasConcept C204222849 @default.
- W3211349623 hasConcept C2524010 @default.
- W3211349623 hasConcept C2779530757 @default.
- W3211349623 hasConcept C32896092 @default.
- W3211349623 hasConcept C33923547 @default.
- W3211349623 hasConcept C38652104 @default.
- W3211349623 hasConcept C41008148 @default.
- W3211349623 hasConcept C516717267 @default.
- W3211349623 hasConcept C549605437 @default.
- W3211349623 hasConcept C59822182 @default.
- W3211349623 hasConcept C71924100 @default.
- W3211349623 hasConcept C86803240 @default.