Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211407364> ?p ?o ?g. }
- W3211407364 endingPage "104045" @default.
- W3211407364 startingPage "104045" @default.
- W3211407364 abstract "There are many problems involved in the evaluation of variants of construction projects. One of the most difficult tasks is to establish evaluation criteria and assign them values, and afterwards to determine the degree to which the analyzed variants meet the criteria. This process is carried out based on opinions of experts, which usually constitute a large and heterogeneous set of data that is difficult to elaborate. As such, it raises most doubts and discussions among scientists. Therefore, the authors of this article propose to use a tool that can improve this process. The paper presents an example, and the Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to solve the described problem. In the example, three variants were to be assessed and 17 criteria were used for the assessment, with the possibility of grouping them into four categories of main criteria. The developed ANFIS algorithm was implemented in the Compute Unified Device Architecture (CUDA) technology available in modern Nvidia graphics processors. The performance of the CUDA-ANFIS model was tested on several examples of real construction projects. It was found that the choice of the best investment option is not obvious when the final scores are the result of processing many thousands of data. In the evaluation process, fluctuations in the experts' responses may not only produce hard-to-distinguish final results, but may even reverse the order of the variants in the ranking. It has been shown that this will not happen if ANFIS is used to specifically filter both the input data and the intermediate results of the calculations. In addition, the use of CUDA technology speeds up calculations more than ten times. The new concept can be successfully applied to construct implicit decision models based on real data." @default.
- W3211407364 created "2021-11-22" @default.
- W3211407364 creator A5036183693 @default.
- W3211407364 creator A5051963604 @default.
- W3211407364 creator A5061717666 @default.
- W3211407364 creator A5062727450 @default.
- W3211407364 date "2022-01-01" @default.
- W3211407364 modified "2023-10-06" @default.
- W3211407364 title "Application of ANFIS in the preparation of expert opinions and evaluation of building design variants in the context of processing large amounts of data" @default.
- W3211407364 cites W2002748354 @default.
- W3211407364 cites W2015315427 @default.
- W3211407364 cites W2016021637 @default.
- W3211407364 cites W2019207321 @default.
- W3211407364 cites W2019715411 @default.
- W3211407364 cites W2019856937 @default.
- W3211407364 cites W2066990386 @default.
- W3211407364 cites W2068904773 @default.
- W3211407364 cites W2097232781 @default.
- W3211407364 cites W2156442229 @default.
- W3211407364 cites W2160777395 @default.
- W3211407364 cites W2299228984 @default.
- W3211407364 cites W2336928458 @default.
- W3211407364 cites W2404886405 @default.
- W3211407364 cites W2489674748 @default.
- W3211407364 cites W2514149083 @default.
- W3211407364 cites W2519223612 @default.
- W3211407364 cites W2552968277 @default.
- W3211407364 cites W2574667966 @default.
- W3211407364 cites W2583926271 @default.
- W3211407364 cites W2607522207 @default.
- W3211407364 cites W2790927958 @default.
- W3211407364 cites W2793690195 @default.
- W3211407364 cites W2807042118 @default.
- W3211407364 cites W2901638830 @default.
- W3211407364 cites W2963434235 @default.
- W3211407364 cites W2996926624 @default.
- W3211407364 cites W3000461720 @default.
- W3211407364 cites W3009678565 @default.
- W3211407364 cites W3009781696 @default.
- W3211407364 cites W3043460766 @default.
- W3211407364 doi "https://doi.org/10.1016/j.autcon.2021.104045" @default.
- W3211407364 hasPublicationYear "2022" @default.
- W3211407364 type Work @default.
- W3211407364 sameAs 3211407364 @default.
- W3211407364 citedByCount "2" @default.
- W3211407364 countsByYear W32114073642023 @default.
- W3211407364 crossrefType "journal-article" @default.
- W3211407364 hasAuthorship W3211407364A5036183693 @default.
- W3211407364 hasAuthorship W3211407364A5051963604 @default.
- W3211407364 hasAuthorship W3211407364A5061717666 @default.
- W3211407364 hasAuthorship W3211407364A5062727450 @default.
- W3211407364 hasBestOaLocation W32114073641 @default.
- W3211407364 hasConcept C111919701 @default.
- W3211407364 hasConcept C113843644 @default.
- W3211407364 hasConcept C116834253 @default.
- W3211407364 hasConcept C119857082 @default.
- W3211407364 hasConcept C121684516 @default.
- W3211407364 hasConcept C124101348 @default.
- W3211407364 hasConcept C129307140 @default.
- W3211407364 hasConcept C151730666 @default.
- W3211407364 hasConcept C154945302 @default.
- W3211407364 hasConcept C157915830 @default.
- W3211407364 hasConcept C173608175 @default.
- W3211407364 hasConcept C177264268 @default.
- W3211407364 hasConcept C186108316 @default.
- W3211407364 hasConcept C189430467 @default.
- W3211407364 hasConcept C195975749 @default.
- W3211407364 hasConcept C199360897 @default.
- W3211407364 hasConcept C21442007 @default.
- W3211407364 hasConcept C2776214188 @default.
- W3211407364 hasConcept C2778119891 @default.
- W3211407364 hasConcept C2779343474 @default.
- W3211407364 hasConcept C41008148 @default.
- W3211407364 hasConcept C58166 @default.
- W3211407364 hasConcept C59822182 @default.
- W3211407364 hasConcept C86803240 @default.
- W3211407364 hasConcept C98045186 @default.
- W3211407364 hasConceptScore W3211407364C111919701 @default.
- W3211407364 hasConceptScore W3211407364C113843644 @default.
- W3211407364 hasConceptScore W3211407364C116834253 @default.
- W3211407364 hasConceptScore W3211407364C119857082 @default.
- W3211407364 hasConceptScore W3211407364C121684516 @default.
- W3211407364 hasConceptScore W3211407364C124101348 @default.
- W3211407364 hasConceptScore W3211407364C129307140 @default.
- W3211407364 hasConceptScore W3211407364C151730666 @default.
- W3211407364 hasConceptScore W3211407364C154945302 @default.
- W3211407364 hasConceptScore W3211407364C157915830 @default.
- W3211407364 hasConceptScore W3211407364C173608175 @default.
- W3211407364 hasConceptScore W3211407364C177264268 @default.
- W3211407364 hasConceptScore W3211407364C186108316 @default.
- W3211407364 hasConceptScore W3211407364C189430467 @default.
- W3211407364 hasConceptScore W3211407364C195975749 @default.
- W3211407364 hasConceptScore W3211407364C199360897 @default.
- W3211407364 hasConceptScore W3211407364C21442007 @default.
- W3211407364 hasConceptScore W3211407364C2776214188 @default.
- W3211407364 hasConceptScore W3211407364C2778119891 @default.
- W3211407364 hasConceptScore W3211407364C2779343474 @default.
- W3211407364 hasConceptScore W3211407364C41008148 @default.