Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211421449> ?p ?o ?g. }
- W3211421449 endingPage "101971" @default.
- W3211421449 startingPage "101971" @default.
- W3211421449 abstract "Using data from Renrendai and three machine learning algorithms, namely, k-nearest neighbor, support vector machine, and random forest, we predicted the default probability of online loan borrowers and compared their prediction performance with that of a logistic model. The results show that, first, based on the AUC (area under the ROC curve) value, accuracy rate and Brier score, the machine learning models can accurately predict the default risk of online borrowers. Second, the integrated discrimination improvement (IDI) test results show that the prediction performance of the machine learning algorithms is significantly better than that of the logistic model. Third, after constructing the investor profit function with misclassification cost, we find that the machine learning algorithms can provide more benefits to investors." @default.
- W3211421449 created "2021-11-22" @default.
- W3211421449 creator A5022950764 @default.
- W3211421449 creator A5025572452 @default.
- W3211421449 creator A5035809629 @default.
- W3211421449 creator A5053797041 @default.
- W3211421449 creator A5069433780 @default.
- W3211421449 creator A5069683652 @default.
- W3211421449 date "2022-01-01" @default.
- W3211421449 modified "2023-10-14" @default.
- W3211421449 title "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China" @default.
- W3211421449 cites W1651356620 @default.
- W3211421449 cites W1977009091 @default.
- W3211421449 cites W1982052293 @default.
- W3211421449 cites W1988753456 @default.
- W3211421449 cites W1990696070 @default.
- W3211421449 cites W1992751099 @default.
- W3211421449 cites W1998438337 @default.
- W3211421449 cites W2016924908 @default.
- W3211421449 cites W2026371044 @default.
- W3211421449 cites W2052611008 @default.
- W3211421449 cites W2058988827 @default.
- W3211421449 cites W2070181735 @default.
- W3211421449 cites W2088048599 @default.
- W3211421449 cites W2103780778 @default.
- W3211421449 cites W2112316706 @default.
- W3211421449 cites W2116660956 @default.
- W3211421449 cites W2131816657 @default.
- W3211421449 cites W2158068969 @default.
- W3211421449 cites W2162387923 @default.
- W3211421449 cites W2162397980 @default.
- W3211421449 cites W2336505047 @default.
- W3211421449 cites W2560354148 @default.
- W3211421449 cites W2560858617 @default.
- W3211421449 cites W2564744000 @default.
- W3211421449 cites W2619329732 @default.
- W3211421449 cites W2700766797 @default.
- W3211421449 cites W2790541459 @default.
- W3211421449 cites W2802240654 @default.
- W3211421449 cites W2808035157 @default.
- W3211421449 cites W2908173773 @default.
- W3211421449 cites W2911964244 @default.
- W3211421449 cites W2914424339 @default.
- W3211421449 cites W2923437336 @default.
- W3211421449 cites W2968935724 @default.
- W3211421449 cites W2972739867 @default.
- W3211421449 cites W2984062413 @default.
- W3211421449 cites W3013460382 @default.
- W3211421449 cites W3017248771 @default.
- W3211421449 cites W3024021156 @default.
- W3211421449 cites W3040529193 @default.
- W3211421449 cites W3044291118 @default.
- W3211421449 cites W3081985152 @default.
- W3211421449 cites W3084258740 @default.
- W3211421449 cites W3121588992 @default.
- W3211421449 cites W3135286407 @default.
- W3211421449 cites W4239510810 @default.
- W3211421449 cites W430137803 @default.
- W3211421449 doi "https://doi.org/10.1016/j.irfa.2021.101971" @default.
- W3211421449 hasPublicationYear "2022" @default.
- W3211421449 type Work @default.
- W3211421449 sameAs 3211421449 @default.
- W3211421449 citedByCount "11" @default.
- W3211421449 countsByYear W32114214492023 @default.
- W3211421449 crossrefType "journal-article" @default.
- W3211421449 hasAuthorship W3211421449A5022950764 @default.
- W3211421449 hasAuthorship W3211421449A5025572452 @default.
- W3211421449 hasAuthorship W3211421449A5035809629 @default.
- W3211421449 hasAuthorship W3211421449A5053797041 @default.
- W3211421449 hasAuthorship W3211421449A5069433780 @default.
- W3211421449 hasAuthorship W3211421449A5069683652 @default.
- W3211421449 hasConcept C10138342 @default.
- W3211421449 hasConcept C11413529 @default.
- W3211421449 hasConcept C119857082 @default.
- W3211421449 hasConcept C12267149 @default.
- W3211421449 hasConcept C151956035 @default.
- W3211421449 hasConcept C154945302 @default.
- W3211421449 hasConcept C162324750 @default.
- W3211421449 hasConcept C169258074 @default.
- W3211421449 hasConcept C178350159 @default.
- W3211421449 hasConcept C2777764128 @default.
- W3211421449 hasConcept C30589699 @default.
- W3211421449 hasConcept C35405484 @default.
- W3211421449 hasConcept C41008148 @default.
- W3211421449 hasConceptScore W3211421449C10138342 @default.
- W3211421449 hasConceptScore W3211421449C11413529 @default.
- W3211421449 hasConceptScore W3211421449C119857082 @default.
- W3211421449 hasConceptScore W3211421449C12267149 @default.
- W3211421449 hasConceptScore W3211421449C151956035 @default.
- W3211421449 hasConceptScore W3211421449C154945302 @default.
- W3211421449 hasConceptScore W3211421449C162324750 @default.
- W3211421449 hasConceptScore W3211421449C169258074 @default.
- W3211421449 hasConceptScore W3211421449C178350159 @default.
- W3211421449 hasConceptScore W3211421449C2777764128 @default.
- W3211421449 hasConceptScore W3211421449C30589699 @default.
- W3211421449 hasConceptScore W3211421449C35405484 @default.
- W3211421449 hasConceptScore W3211421449C41008148 @default.
- W3211421449 hasFunder F4320321001 @default.