Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211431567> ?p ?o ?g. }
- W3211431567 endingPage "111902" @default.
- W3211431567 startingPage "111902" @default.
- W3211431567 abstract "Over the past two decades, the use of machine learning (ML) methods to model biomass and waste gasification/pyrolysis has increased rapidly. Only 70 papers were published in the 2000s compared to a total of 549 publications in the 2010s. However, the approaches and findings have yet to be systematically reviewed. In this work, the machine learning methods most commonly employed for modelling gasification and pyrolysis processes are discussed with reference to their applications, merits, and limitations. Whilst coefficients of determination (R2) can be difficult to compare directly, due to some studies having greatly different approaches and aims, most studies consistently achieved a high prediction accuracy with R2 > 0.90. Artificial neural networks have been most widely used due to their potential to learn highly non-linear input-output relationships. However, a variety of methods (e.g. regression methods, tree-based methods, and support vector machines) are appropriate depending on the application, data availability, model speed, etc. It is concluded that ML has great potential for the development of models with greater accuracy. Some advantages of machine learning models over existing models are their ability to incorporate relevant non-numerical parameters and the power to generate a multitude of solutions for a wide range of input parameters. More emphasis should be placed on model interpretability in order to better understand the processes being studied." @default.
- W3211431567 created "2021-11-22" @default.
- W3211431567 creator A5040570993 @default.
- W3211431567 creator A5060762370 @default.
- W3211431567 creator A5083497035 @default.
- W3211431567 date "2022-03-01" @default.
- W3211431567 modified "2023-10-12" @default.
- W3211431567 title "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste" @default.
- W3211431567 cites W1524673385 @default.
- W3211431567 cites W1596717185 @default.
- W3211431567 cites W1913806764 @default.
- W3211431567 cites W1914914878 @default.
- W3211431567 cites W1963614637 @default.
- W3211431567 cites W1996039992 @default.
- W3211431567 cites W2003591573 @default.
- W3211431567 cites W2018469641 @default.
- W3211431567 cites W2022571613 @default.
- W3211431567 cites W2023933387 @default.
- W3211431567 cites W2032813423 @default.
- W3211431567 cites W2041497505 @default.
- W3211431567 cites W2041630878 @default.
- W3211431567 cites W2058831519 @default.
- W3211431567 cites W2062159269 @default.
- W3211431567 cites W2064695941 @default.
- W3211431567 cites W2069942641 @default.
- W3211431567 cites W2070493638 @default.
- W3211431567 cites W2075474542 @default.
- W3211431567 cites W2076063813 @default.
- W3211431567 cites W2078270988 @default.
- W3211431567 cites W2078659027 @default.
- W3211431567 cites W2082933640 @default.
- W3211431567 cites W2083844448 @default.
- W3211431567 cites W2085421387 @default.
- W3211431567 cites W2101690001 @default.
- W3211431567 cites W2106100979 @default.
- W3211431567 cites W2109939957 @default.
- W3211431567 cites W2128458452 @default.
- W3211431567 cites W2130365445 @default.
- W3211431567 cites W2138691440 @default.
- W3211431567 cites W2143496393 @default.
- W3211431567 cites W2165192867 @default.
- W3211431567 cites W2166363382 @default.
- W3211431567 cites W2169053895 @default.
- W3211431567 cites W2216536395 @default.
- W3211431567 cites W2225755105 @default.
- W3211431567 cites W2321868282 @default.
- W3211431567 cites W2406786877 @default.
- W3211431567 cites W2516078264 @default.
- W3211431567 cites W2562312418 @default.
- W3211431567 cites W2564667983 @default.
- W3211431567 cites W2586863128 @default.
- W3211431567 cites W2605986812 @default.
- W3211431567 cites W2734925198 @default.
- W3211431567 cites W2757714583 @default.
- W3211431567 cites W2778571618 @default.
- W3211431567 cites W2783214976 @default.
- W3211431567 cites W2789310845 @default.
- W3211431567 cites W2791006724 @default.
- W3211431567 cites W2794680208 @default.
- W3211431567 cites W2799378605 @default.
- W3211431567 cites W2805727081 @default.
- W3211431567 cites W2890751459 @default.
- W3211431567 cites W2911964244 @default.
- W3211431567 cites W2911976353 @default.
- W3211431567 cites W2918604648 @default.
- W3211431567 cites W2933878133 @default.
- W3211431567 cites W2943260003 @default.
- W3211431567 cites W2944373412 @default.
- W3211431567 cites W2945999410 @default.
- W3211431567 cites W2946512733 @default.
- W3211431567 cites W2948191341 @default.
- W3211431567 cites W2954729539 @default.
- W3211431567 cites W2980252144 @default.
- W3211431567 cites W2991351573 @default.
- W3211431567 cites W3000209534 @default.
- W3211431567 cites W3004113322 @default.
- W3211431567 cites W3006022510 @default.
- W3211431567 cites W3006835453 @default.
- W3211431567 cites W3016269017 @default.
- W3211431567 cites W3024525656 @default.
- W3211431567 cites W3033335987 @default.
- W3211431567 cites W3033926479 @default.
- W3211431567 cites W3040766963 @default.
- W3211431567 cites W3048716975 @default.
- W3211431567 cites W3048891512 @default.
- W3211431567 cites W3084693167 @default.
- W3211431567 cites W3084731547 @default.
- W3211431567 cites W3086284090 @default.
- W3211431567 cites W3114296031 @default.
- W3211431567 cites W3128602761 @default.
- W3211431567 cites W3130545732 @default.
- W3211431567 cites W3132498446 @default.
- W3211431567 cites W3155638327 @default.
- W3211431567 doi "https://doi.org/10.1016/j.rser.2021.111902" @default.
- W3211431567 hasPublicationYear "2022" @default.
- W3211431567 type Work @default.
- W3211431567 sameAs 3211431567 @default.
- W3211431567 citedByCount "50" @default.