Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211432855> ?p ?o ?g. }
- W3211432855 endingPage "3845" @default.
- W3211432855 startingPage "3832" @default.
- W3211432855 abstract "Multivariate time series data (Mv-TSD) portray the evolving processes of the system(s) under examination in a “multi-view” manner. Factorization methods are salient for Mv-TSD analysis with the potentials of structural feature construction correlating various data attributes. However, research challenges remain in the derivation of factors due to highly scattered data distribution of Mv-TSD and intensive interferences/outliers embedded in the source data. The proposed Enhanced Bayesian Factorization approach ( <i>Enhanced-BF</i> ) addresses the challenges in three phases: (1) variant scale partitioning applies to Mv-TSD according to degree of amplitude and obtains the blocks of variant scales; (2) hierarchical Bayesian model for tensor factorization automatically derives the factors of each block with interferences suppressed; (3) Bayesian unification model merges those block factors to construct the final structural features. <i>Enhanced-BF</i> has been evaluated using a case study of brain data engineering with multivariate electroencephalogram (EEG). Experimental results indicate that the proposed method manifests robustness to the interferences and outperforms the counterparts in terms of operation efficiency and error when factorizing EEG tensor. Besides, <i>Enhanced-BF</i> excels in factorization-based analysis of ongoing autism spectrum disorder (ASD) EEG: 3 times speed-up in factorization and <inline-formula><tex-math notation=LaTeX>$87.35%$</tex-math></inline-formula> accuracy in ASD discrimination. The latent factors (“biomarkers”) can distinctly interpret the typical EEG characteristics of ASD subjects." @default.
- W3211432855 created "2021-11-22" @default.
- W3211432855 creator A5015993565 @default.
- W3211432855 creator A5018824735 @default.
- W3211432855 creator A5039226147 @default.
- W3211432855 creator A5072484211 @default.
- W3211432855 creator A5072670483 @default.
- W3211432855 creator A5075550185 @default.
- W3211432855 creator A5078465675 @default.
- W3211432855 creator A5079169019 @default.
- W3211432855 date "2023-04-01" @default.
- W3211432855 modified "2023-09-25" @default.
- W3211432855 title "Enhanced Bayesian Factorization With Variant Scale Partitioning for Multivariate Time Series Analysis" @default.
- W3211432855 cites W1814521481 @default.
- W3211432855 cites W2008114373 @default.
- W3211432855 cites W2008972618 @default.
- W3211432855 cites W2056925087 @default.
- W3211432855 cites W2063385922 @default.
- W3211432855 cites W2117111086 @default.
- W3211432855 cites W2119412403 @default.
- W3211432855 cites W2133551681 @default.
- W3211432855 cites W2134905716 @default.
- W3211432855 cites W2137525015 @default.
- W3211432855 cites W2140268786 @default.
- W3211432855 cites W2141159272 @default.
- W3211432855 cites W2147512299 @default.
- W3211432855 cites W2156192068 @default.
- W3211432855 cites W2163665255 @default.
- W3211432855 cites W2169265511 @default.
- W3211432855 cites W2384663018 @default.
- W3211432855 cites W2397288556 @default.
- W3211432855 cites W2473971983 @default.
- W3211432855 cites W2520495422 @default.
- W3211432855 cites W2558317411 @default.
- W3211432855 cites W2731416775 @default.
- W3211432855 cites W2765366332 @default.
- W3211432855 cites W2765515481 @default.
- W3211432855 cites W2785189499 @default.
- W3211432855 cites W2803140164 @default.
- W3211432855 cites W2888986465 @default.
- W3211432855 cites W2889245000 @default.
- W3211432855 cites W2889617221 @default.
- W3211432855 cites W2909390529 @default.
- W3211432855 cites W2915893085 @default.
- W3211432855 cites W2930650313 @default.
- W3211432855 cites W2962736999 @default.
- W3211432855 cites W2963762195 @default.
- W3211432855 cites W2963885538 @default.
- W3211432855 cites W2963912395 @default.
- W3211432855 cites W2966042949 @default.
- W3211432855 cites W2980817514 @default.
- W3211432855 cites W2997217503 @default.
- W3211432855 cites W3004471907 @default.
- W3211432855 cites W3009014396 @default.
- W3211432855 cites W3102869303 @default.
- W3211432855 cites W3106244377 @default.
- W3211432855 cites W792141054 @default.
- W3211432855 doi "https://doi.org/10.1109/tkde.2021.3128770" @default.
- W3211432855 hasPublicationYear "2023" @default.
- W3211432855 type Work @default.
- W3211432855 sameAs 3211432855 @default.
- W3211432855 citedByCount "0" @default.
- W3211432855 crossrefType "journal-article" @default.
- W3211432855 hasAuthorship W3211432855A5015993565 @default.
- W3211432855 hasAuthorship W3211432855A5018824735 @default.
- W3211432855 hasAuthorship W3211432855A5039226147 @default.
- W3211432855 hasAuthorship W3211432855A5072484211 @default.
- W3211432855 hasAuthorship W3211432855A5072670483 @default.
- W3211432855 hasAuthorship W3211432855A5075550185 @default.
- W3211432855 hasAuthorship W3211432855A5078465675 @default.
- W3211432855 hasAuthorship W3211432855A5079169019 @default.
- W3211432855 hasConcept C104317684 @default.
- W3211432855 hasConcept C107673813 @default.
- W3211432855 hasConcept C11413529 @default.
- W3211432855 hasConcept C118552586 @default.
- W3211432855 hasConcept C119857082 @default.
- W3211432855 hasConcept C121332964 @default.
- W3211432855 hasConcept C153180895 @default.
- W3211432855 hasConcept C154945302 @default.
- W3211432855 hasConcept C15744967 @default.
- W3211432855 hasConcept C158693339 @default.
- W3211432855 hasConcept C161584116 @default.
- W3211432855 hasConcept C185592680 @default.
- W3211432855 hasConcept C187834632 @default.
- W3211432855 hasConcept C41008148 @default.
- W3211432855 hasConcept C42355184 @default.
- W3211432855 hasConcept C522805319 @default.
- W3211432855 hasConcept C55493867 @default.
- W3211432855 hasConcept C62520636 @default.
- W3211432855 hasConcept C63479239 @default.
- W3211432855 hasConcept C79337645 @default.
- W3211432855 hasConceptScore W3211432855C104317684 @default.
- W3211432855 hasConceptScore W3211432855C107673813 @default.
- W3211432855 hasConceptScore W3211432855C11413529 @default.
- W3211432855 hasConceptScore W3211432855C118552586 @default.
- W3211432855 hasConceptScore W3211432855C119857082 @default.
- W3211432855 hasConceptScore W3211432855C121332964 @default.
- W3211432855 hasConceptScore W3211432855C153180895 @default.