Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211433069> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3211433069 abstract "In recent times, the healthcare industry has been generating a significant amount of data in distinct formats, such as electronic health records (EHR), clinical trials, genetic data, payments, scientific articles, wearables, and care management databases. Data science is useful for analysis (pattern recognition, hypothesis testing, risk valuation) and prediction. The major, primary usage of data science in the healthcare domain is in medical imaging. At the same time, lung cancer diagnosis has become a hot research topic, as automated disease detection poses numerous benefits. Although numerous approaches have existed in the literature for lung cancer diagnosis, the design of a novel model to automatically identify lung cancer is a challenging task. In this view, this paper designs an automated machine learning (ML) with data science-enabled lung cancer diagnosis and classification (MLDS-LCDC) using computed tomography (CT) images. The presented model initially employs Gaussian filtering (GF)-based pre-processing technique on the CT images collected from the lung cancer database. Besides, they are fed into the normalized cuts (Ncuts) technique where the nodule in the pre-processed image can be determined. Moreover, the oriented FAST and rotated BRIEF (ORB) technique is applied as a feature extractor. At last, sunflower optimization-based wavelet neural network (SFO-WNN) model is employed for the classification of lung cancer. In order to examine the diagnostic outcome of the MLDS-LCDC model, a set of experiments were carried out and the results are investigated in terms of different aspects. The resultant values demonstrated the effectiveness of the MLDS-LCDC model over the other state-of-the-art methods with the maximum sensitivity of 97.01%, specificity of 98.64%, and accuracy of 98.11%." @default.
- W3211433069 created "2021-11-22" @default.
- W3211433069 creator A5009910652 @default.
- W3211433069 creator A5020863389 @default.
- W3211433069 creator A5044771843 @default.
- W3211433069 creator A5061599419 @default.
- W3211433069 creator A5073934994 @default.
- W3211433069 creator A5078936408 @default.
- W3211433069 date "2021-11-10" @default.
- W3211433069 modified "2023-10-17" @default.
- W3211433069 title "Machine Learning with Data Science-Enabled Lung Cancer Diagnosis and Classification Using Computed Tomography Images" @default.
- W3211433069 cites W1718191392 @default.
- W3211433069 cites W2008469139 @default.
- W3211433069 cites W2757722543 @default.
- W3211433069 cites W2794792015 @default.
- W3211433069 cites W2802703689 @default.
- W3211433069 cites W2803364900 @default.
- W3211433069 cites W2943040914 @default.
- W3211433069 cites W2999759831 @default.
- W3211433069 cites W3013170635 @default.
- W3211433069 cites W3015933079 @default.
- W3211433069 cites W3035976600 @default.
- W3211433069 cites W3036031408 @default.
- W3211433069 cites W3081550521 @default.
- W3211433069 cites W3100933494 @default.
- W3211433069 cites W3105613063 @default.
- W3211433069 cites W3120861241 @default.
- W3211433069 cites W3127603591 @default.
- W3211433069 cites W3167341124 @default.
- W3211433069 cites W4247786183 @default.
- W3211433069 doi "https://doi.org/10.1142/s0219467822400022" @default.
- W3211433069 hasPublicationYear "2021" @default.
- W3211433069 type Work @default.
- W3211433069 sameAs 3211433069 @default.
- W3211433069 citedByCount "1" @default.
- W3211433069 countsByYear W32114330692023 @default.
- W3211433069 crossrefType "journal-article" @default.
- W3211433069 hasAuthorship W3211433069A5009910652 @default.
- W3211433069 hasAuthorship W3211433069A5020863389 @default.
- W3211433069 hasAuthorship W3211433069A5044771843 @default.
- W3211433069 hasAuthorship W3211433069A5061599419 @default.
- W3211433069 hasAuthorship W3211433069A5073934994 @default.
- W3211433069 hasAuthorship W3211433069A5078936408 @default.
- W3211433069 hasConcept C115961682 @default.
- W3211433069 hasConcept C119857082 @default.
- W3211433069 hasConcept C124101348 @default.
- W3211433069 hasConcept C142724271 @default.
- W3211433069 hasConcept C154945302 @default.
- W3211433069 hasConcept C2776256026 @default.
- W3211433069 hasConcept C2777405583 @default.
- W3211433069 hasConcept C41008148 @default.
- W3211433069 hasConcept C71924100 @default.
- W3211433069 hasConcept C9417928 @default.
- W3211433069 hasConceptScore W3211433069C115961682 @default.
- W3211433069 hasConceptScore W3211433069C119857082 @default.
- W3211433069 hasConceptScore W3211433069C124101348 @default.
- W3211433069 hasConceptScore W3211433069C142724271 @default.
- W3211433069 hasConceptScore W3211433069C154945302 @default.
- W3211433069 hasConceptScore W3211433069C2776256026 @default.
- W3211433069 hasConceptScore W3211433069C2777405583 @default.
- W3211433069 hasConceptScore W3211433069C41008148 @default.
- W3211433069 hasConceptScore W3211433069C71924100 @default.
- W3211433069 hasConceptScore W3211433069C9417928 @default.
- W3211433069 hasIssue "03" @default.
- W3211433069 hasLocation W32114330691 @default.
- W3211433069 hasOpenAccess W3211433069 @default.
- W3211433069 hasPrimaryLocation W32114330691 @default.
- W3211433069 hasRelatedWork W2017530897 @default.
- W3211433069 hasRelatedWork W2961085424 @default.
- W3211433069 hasRelatedWork W3072506405 @default.
- W3211433069 hasRelatedWork W3126844601 @default.
- W3211433069 hasRelatedWork W4224108623 @default.
- W3211433069 hasRelatedWork W4286629047 @default.
- W3211433069 hasRelatedWork W4306321456 @default.
- W3211433069 hasRelatedWork W4306674287 @default.
- W3211433069 hasRelatedWork W4323537357 @default.
- W3211433069 hasRelatedWork W4224009465 @default.
- W3211433069 hasVolume "23" @default.
- W3211433069 isParatext "false" @default.
- W3211433069 isRetracted "false" @default.
- W3211433069 magId "3211433069" @default.
- W3211433069 workType "article" @default.