Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211487668> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3211487668 endingPage "112883" @default.
- W3211487668 startingPage "112883" @default.
- W3211487668 abstract "Machine-learning has recently gained considerable attention in the earthquake engineering community, as it can map the complex relationship between the expected damage and the input parameters. It is often necessary to understand the reasons for the behavior and predictions of the machine-learning model. This paper addresses this issue through interpretable machine-learning approaches such as partial dependence plots, accumulated local effects, and Shapely additive explanations. The evaluation of these approaches is carried out (1) at a component level by analyzing the shear strength predictions by a machine-learning model and (2) at a regional level through the machine-learning model for the regional damage assessment of bridges in California. The comparison helps to identify (1) the proper implementation of these approaches for the efficient use of machine-learning models and (2) key influential variables and thresholds that govern the prediction of the machine-learning models." @default.
- W3211487668 created "2021-11-22" @default.
- W3211487668 creator A5024961152 @default.
- W3211487668 creator A5046793178 @default.
- W3211487668 creator A5068778859 @default.
- W3211487668 creator A5089826082 @default.
- W3211487668 date "2022-01-01" @default.
- W3211487668 modified "2023-10-16" @default.
- W3211487668 title "Machine-learning interpretability techniques for seismic performance assessment of infrastructure systems" @default.
- W3211487668 cites W1678356000 @default.
- W3211487668 cites W1977834849 @default.
- W3211487668 cites W1986074276 @default.
- W3211487668 cites W2033839559 @default.
- W3211487668 cites W2048467007 @default.
- W3211487668 cites W2072626460 @default.
- W3211487668 cites W2103482032 @default.
- W3211487668 cites W2109759398 @default.
- W3211487668 cites W2169092139 @default.
- W3211487668 cites W2602588427 @default.
- W3211487668 cites W2769788551 @default.
- W3211487668 cites W2788697198 @default.
- W3211487668 cites W2789384841 @default.
- W3211487668 cites W2892328882 @default.
- W3211487668 cites W2911964244 @default.
- W3211487668 cites W2930890426 @default.
- W3211487668 cites W2963587403 @default.
- W3211487668 cites W2964772981 @default.
- W3211487668 cites W2971628638 @default.
- W3211487668 cites W2972460946 @default.
- W3211487668 cites W2974551902 @default.
- W3211487668 cites W2976353133 @default.
- W3211487668 cites W2981416566 @default.
- W3211487668 cites W3006597564 @default.
- W3211487668 cites W3035353528 @default.
- W3211487668 cites W3046705597 @default.
- W3211487668 cites W3049767776 @default.
- W3211487668 cites W3073831824 @default.
- W3211487668 cites W3080875352 @default.
- W3211487668 cites W3102631786 @default.
- W3211487668 cites W3174752098 @default.
- W3211487668 cites W4234698323 @default.
- W3211487668 cites W4244895750 @default.
- W3211487668 cites W4244952642 @default.
- W3211487668 doi "https://doi.org/10.1016/j.engstruct.2021.112883" @default.
- W3211487668 hasPublicationYear "2022" @default.
- W3211487668 type Work @default.
- W3211487668 sameAs 3211487668 @default.
- W3211487668 citedByCount "43" @default.
- W3211487668 countsByYear W32114876682022 @default.
- W3211487668 countsByYear W32114876682023 @default.
- W3211487668 crossrefType "journal-article" @default.
- W3211487668 hasAuthorship W3211487668A5024961152 @default.
- W3211487668 hasAuthorship W3211487668A5046793178 @default.
- W3211487668 hasAuthorship W3211487668A5068778859 @default.
- W3211487668 hasAuthorship W3211487668A5089826082 @default.
- W3211487668 hasConcept C119857082 @default.
- W3211487668 hasConcept C121332964 @default.
- W3211487668 hasConcept C154945302 @default.
- W3211487668 hasConcept C168167062 @default.
- W3211487668 hasConcept C26517878 @default.
- W3211487668 hasConcept C2781067378 @default.
- W3211487668 hasConcept C38652104 @default.
- W3211487668 hasConcept C41008148 @default.
- W3211487668 hasConcept C97355855 @default.
- W3211487668 hasConceptScore W3211487668C119857082 @default.
- W3211487668 hasConceptScore W3211487668C121332964 @default.
- W3211487668 hasConceptScore W3211487668C154945302 @default.
- W3211487668 hasConceptScore W3211487668C168167062 @default.
- W3211487668 hasConceptScore W3211487668C26517878 @default.
- W3211487668 hasConceptScore W3211487668C2781067378 @default.
- W3211487668 hasConceptScore W3211487668C38652104 @default.
- W3211487668 hasConceptScore W3211487668C41008148 @default.
- W3211487668 hasConceptScore W3211487668C97355855 @default.
- W3211487668 hasFunder F4320322120 @default.
- W3211487668 hasFunder F4320328359 @default.
- W3211487668 hasLocation W32114876681 @default.
- W3211487668 hasOpenAccess W3211487668 @default.
- W3211487668 hasPrimaryLocation W32114876681 @default.
- W3211487668 hasRelatedWork W1986582023 @default.
- W3211487668 hasRelatedWork W2883749686 @default.
- W3211487668 hasRelatedWork W2961085424 @default.
- W3211487668 hasRelatedWork W3046775127 @default.
- W3211487668 hasRelatedWork W3107602296 @default.
- W3211487668 hasRelatedWork W3170094116 @default.
- W3211487668 hasRelatedWork W3209574120 @default.
- W3211487668 hasRelatedWork W4306674287 @default.
- W3211487668 hasRelatedWork W4315864862 @default.
- W3211487668 hasRelatedWork W4386462264 @default.
- W3211487668 hasVolume "250" @default.
- W3211487668 isParatext "false" @default.
- W3211487668 isRetracted "false" @default.
- W3211487668 magId "3211487668" @default.
- W3211487668 workType "article" @default.