Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211522010> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3211522010 endingPage "3743" @default.
- W3211522010 startingPage "3730" @default.
- W3211522010 abstract "As we are moving toward an age of digital globalization and online shopping, there is an increasing need for an efficient and reliable system that can help the consumers and the visitors to find their suitable products. Currently, various websites display the searched product when a visitor comes to their website. What we need is a system, which can recommend the products which are like the searched products. This will help the consumer to find out another product in case the item is unavailable, or the searched product is not good enough, or when they would like to look through different similar products. A good recommendation system has been found out to be financially beneficial for the companies also. It is found out that consumer is 35% more likely to buy a product if the recommendation is good enough for consumers. This proposed approach to the problem of the product recommendation system is to make use of the Amazon Apparel database, which contains data of 180,000 apparels. We are going to use NLP technologies and CNN to help in predicting similar products. Title of the product is used as a major attribute during NLP analysis and recommendation. CNN used at last to create a feature vector from product images, and use this vector combined with all the other vectors, for prediction. We compare the distance between vectors of all products and recommend the products with least distance. VGG-16 architecture used to extract the features from the images." @default.
- W3211522010 created "2021-11-22" @default.
- W3211522010 creator A5037843209 @default.
- W3211522010 creator A5054027710 @default.
- W3211522010 creator A5069854190 @default.
- W3211522010 creator A5072448989 @default.
- W3211522010 creator A5077275433 @default.
- W3211522010 creator A5087630623 @default.
- W3211522010 date "2023-01-01" @default.
- W3211522010 modified "2023-09-26" @default.
- W3211522010 title "An Efficient Approach of Product Recommendation System using NLP Technique" @default.
- W3211522010 cites W2127923309 @default.
- W3211522010 cites W2782554795 @default.
- W3211522010 cites W2788150524 @default.
- W3211522010 cites W2895803426 @default.
- W3211522010 cites W2965763886 @default.
- W3211522010 cites W2966501701 @default.
- W3211522010 cites W2968358619 @default.
- W3211522010 cites W2982138795 @default.
- W3211522010 cites W3000138314 @default.
- W3211522010 cites W3012352421 @default.
- W3211522010 cites W3037205129 @default.
- W3211522010 cites W3037572431 @default.
- W3211522010 cites W3038085707 @default.
- W3211522010 cites W3097171710 @default.
- W3211522010 cites W3115084214 @default.
- W3211522010 cites W3134630415 @default.
- W3211522010 cites W3134811658 @default.
- W3211522010 cites W3156904194 @default.
- W3211522010 cites W3172391100 @default.
- W3211522010 cites W3184763326 @default.
- W3211522010 cites W3210007053 @default.
- W3211522010 cites W4235425699 @default.
- W3211522010 doi "https://doi.org/10.1016/j.matpr.2021.07.371" @default.
- W3211522010 hasPublicationYear "2023" @default.
- W3211522010 type Work @default.
- W3211522010 sameAs 3211522010 @default.
- W3211522010 citedByCount "3" @default.
- W3211522010 countsByYear W32115220102022 @default.
- W3211522010 countsByYear W32115220102023 @default.
- W3211522010 crossrefType "journal-article" @default.
- W3211522010 hasAuthorship W3211522010A5037843209 @default.
- W3211522010 hasAuthorship W3211522010A5054027710 @default.
- W3211522010 hasAuthorship W3211522010A5069854190 @default.
- W3211522010 hasAuthorship W3211522010A5072448989 @default.
- W3211522010 hasAuthorship W3211522010A5077275433 @default.
- W3211522010 hasAuthorship W3211522010A5087630623 @default.
- W3211522010 hasConcept C138885662 @default.
- W3211522010 hasConcept C154945302 @default.
- W3211522010 hasConcept C166957645 @default.
- W3211522010 hasConcept C199360897 @default.
- W3211522010 hasConcept C23123220 @default.
- W3211522010 hasConcept C2524010 @default.
- W3211522010 hasConcept C2776401178 @default.
- W3211522010 hasConcept C33923547 @default.
- W3211522010 hasConcept C41008148 @default.
- W3211522010 hasConcept C41895202 @default.
- W3211522010 hasConcept C48947383 @default.
- W3211522010 hasConcept C530175646 @default.
- W3211522010 hasConcept C557471498 @default.
- W3211522010 hasConcept C90673727 @default.
- W3211522010 hasConcept C95457728 @default.
- W3211522010 hasConceptScore W3211522010C138885662 @default.
- W3211522010 hasConceptScore W3211522010C154945302 @default.
- W3211522010 hasConceptScore W3211522010C166957645 @default.
- W3211522010 hasConceptScore W3211522010C199360897 @default.
- W3211522010 hasConceptScore W3211522010C23123220 @default.
- W3211522010 hasConceptScore W3211522010C2524010 @default.
- W3211522010 hasConceptScore W3211522010C2776401178 @default.
- W3211522010 hasConceptScore W3211522010C33923547 @default.
- W3211522010 hasConceptScore W3211522010C41008148 @default.
- W3211522010 hasConceptScore W3211522010C41895202 @default.
- W3211522010 hasConceptScore W3211522010C48947383 @default.
- W3211522010 hasConceptScore W3211522010C530175646 @default.
- W3211522010 hasConceptScore W3211522010C557471498 @default.
- W3211522010 hasConceptScore W3211522010C90673727 @default.
- W3211522010 hasConceptScore W3211522010C95457728 @default.
- W3211522010 hasLocation W32115220101 @default.
- W3211522010 hasOpenAccess W3211522010 @default.
- W3211522010 hasPrimaryLocation W32115220101 @default.
- W3211522010 hasRelatedWork W1925218232 @default.
- W3211522010 hasRelatedWork W2141272353 @default.
- W3211522010 hasRelatedWork W2316860054 @default.
- W3211522010 hasRelatedWork W2348159088 @default.
- W3211522010 hasRelatedWork W2369936857 @default.
- W3211522010 hasRelatedWork W2469392158 @default.
- W3211522010 hasRelatedWork W2809363009 @default.
- W3211522010 hasRelatedWork W2883909875 @default.
- W3211522010 hasRelatedWork W2968745142 @default.
- W3211522010 hasRelatedWork W767683472 @default.
- W3211522010 hasVolume "80" @default.
- W3211522010 isParatext "false" @default.
- W3211522010 isRetracted "false" @default.
- W3211522010 magId "3211522010" @default.
- W3211522010 workType "article" @default.