Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211522020> ?p ?o ?g. }
- W3211522020 endingPage "1744" @default.
- W3211522020 startingPage "1735" @default.
- W3211522020 abstract "Deep learning-based reconstruction (DLR) can potentially improve image quality by reduction of noise, thereby enabling fast acquisition of magnetic resonance imaging (MRI). However, a systematic evaluation of image quality and diagnostic performance of MRI using short acquisition time with DLR has rarely been investigated in men with prostate cancer.To assess the image quality and diagnostic performance of MRI using short acquisition time with DLR for the evaluation of extraprostatic extension (EPE).Retrospective.One hundred and nine men.3 T; turbo spin echo T2-weighted images (T2WI), echo-planar diffusion-weighted, and spoiled gradient echo dynamic contrast-enhanced images.To compare image quality, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) and subjective analysis using Likert scales on three T2WIs (MRI using conventional acquisition time, MRI using short acquisition time [fast MRI], and fast MRI with DLR) were performed. The diagnostic performance for EPE was evaluated by three independent readers.SNR, CNR, and image quality scores across the three imaging protocols were compared using Friedman tests. The diagnostic performance for EPE was assessed using the area under receiver operating characteristic curves (AUCs). P < 0.05 was considered statistically significant.Fast MRI with DLR demonstrated significantly higher SNR (mean ± SD, 14.7 ± 6.8 vs. 8.8 ± 4.9) and CNR (mean ± SD, 6.5 ± 6.3 vs. 3.4 ± 3.6) values and higher image quality scores (median, 4.0 vs. 3.0 for three readers) than fast MRI. The AUCs for EPE were significantly higher with the use of DLR (0.86 vs. 0.75 for reader 2 and 0.82 vs. 0.73 for reader 3) compared with fast MRI, whereas differences were not significant for reader 1 (0.81 vs. 0.74; P = 0.09).DLR may be useful in reducing the acquisition time of prostate MRI without compromising image quality or diagnostic performance.4 TECHNICAL EFFICACY: Stage 3." @default.
- W3211522020 created "2021-11-22" @default.
- W3211522020 creator A5038598239 @default.
- W3211522020 creator A5044151918 @default.
- W3211522020 creator A5061814504 @default.
- W3211522020 creator A5076366355 @default.
- W3211522020 creator A5078141864 @default.
- W3211522020 date "2021-11-13" @default.
- W3211522020 modified "2023-10-16" @default.
- W3211522020 title "Fast T2‐Weighted Imaging With Deep Learning‐Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy" @default.
- W3211522020 cites W2093294814 @default.
- W3211522020 cites W2212041357 @default.
- W3211522020 cites W2327037637 @default.
- W3211522020 cites W2577453388 @default.
- W3211522020 cites W2604388535 @default.
- W3211522020 cites W2736990592 @default.
- W3211522020 cites W2765531331 @default.
- W3211522020 cites W2768749413 @default.
- W3211522020 cites W2793905111 @default.
- W3211522020 cites W2805452553 @default.
- W3211522020 cites W2808116211 @default.
- W3211522020 cites W2901859788 @default.
- W3211522020 cites W2913900859 @default.
- W3211522020 cites W2922071185 @default.
- W3211522020 cites W2947728671 @default.
- W3211522020 cites W2952992130 @default.
- W3211522020 cites W3010331388 @default.
- W3211522020 cites W3021590147 @default.
- W3211522020 cites W3027874948 @default.
- W3211522020 cites W3041796785 @default.
- W3211522020 cites W3045710692 @default.
- W3211522020 cites W3078614411 @default.
- W3211522020 cites W3097918907 @default.
- W3211522020 cites W3113898662 @default.
- W3211522020 cites W3127700360 @default.
- W3211522020 cites W3128562958 @default.
- W3211522020 cites W3128713177 @default.
- W3211522020 cites W3130894550 @default.
- W3211522020 doi "https://doi.org/10.1002/jmri.27992" @default.
- W3211522020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34773449" @default.
- W3211522020 hasPublicationYear "2021" @default.
- W3211522020 type Work @default.
- W3211522020 sameAs 3211522020 @default.
- W3211522020 citedByCount "11" @default.
- W3211522020 countsByYear W32115220202022 @default.
- W3211522020 countsByYear W32115220202023 @default.
- W3211522020 crossrefType "journal-article" @default.
- W3211522020 hasAuthorship W3211522020A5038598239 @default.
- W3211522020 hasAuthorship W3211522020A5044151918 @default.
- W3211522020 hasAuthorship W3211522020A5061814504 @default.
- W3211522020 hasAuthorship W3211522020A5076366355 @default.
- W3211522020 hasAuthorship W3211522020A5078141864 @default.
- W3211522020 hasConcept C115961682 @default.
- W3211522020 hasConcept C121608353 @default.
- W3211522020 hasConcept C126322002 @default.
- W3211522020 hasConcept C126838900 @default.
- W3211522020 hasConcept C143409427 @default.
- W3211522020 hasConcept C154945302 @default.
- W3211522020 hasConcept C2779466945 @default.
- W3211522020 hasConcept C2780192828 @default.
- W3211522020 hasConcept C2989005 @default.
- W3211522020 hasConcept C41008148 @default.
- W3211522020 hasConcept C55020928 @default.
- W3211522020 hasConcept C58471807 @default.
- W3211522020 hasConcept C71924100 @default.
- W3211522020 hasConcept C86190813 @default.
- W3211522020 hasConceptScore W3211522020C115961682 @default.
- W3211522020 hasConceptScore W3211522020C121608353 @default.
- W3211522020 hasConceptScore W3211522020C126322002 @default.
- W3211522020 hasConceptScore W3211522020C126838900 @default.
- W3211522020 hasConceptScore W3211522020C143409427 @default.
- W3211522020 hasConceptScore W3211522020C154945302 @default.
- W3211522020 hasConceptScore W3211522020C2779466945 @default.
- W3211522020 hasConceptScore W3211522020C2780192828 @default.
- W3211522020 hasConceptScore W3211522020C2989005 @default.
- W3211522020 hasConceptScore W3211522020C41008148 @default.
- W3211522020 hasConceptScore W3211522020C55020928 @default.
- W3211522020 hasConceptScore W3211522020C58471807 @default.
- W3211522020 hasConceptScore W3211522020C71924100 @default.
- W3211522020 hasConceptScore W3211522020C86190813 @default.
- W3211522020 hasIssue "6" @default.
- W3211522020 hasLocation W32115220201 @default.
- W3211522020 hasLocation W32115220202 @default.
- W3211522020 hasOpenAccess W3211522020 @default.
- W3211522020 hasPrimaryLocation W32115220201 @default.
- W3211522020 hasRelatedWork W2052922077 @default.
- W3211522020 hasRelatedWork W2084573604 @default.
- W3211522020 hasRelatedWork W2098713331 @default.
- W3211522020 hasRelatedWork W2329494668 @default.
- W3211522020 hasRelatedWork W2357320059 @default.
- W3211522020 hasRelatedWork W2383145210 @default.
- W3211522020 hasRelatedWork W2523308160 @default.
- W3211522020 hasRelatedWork W2596910968 @default.
- W3211522020 hasRelatedWork W3140533390 @default.
- W3211522020 hasRelatedWork W595276458 @default.
- W3211522020 hasVolume "55" @default.
- W3211522020 isParatext "false" @default.
- W3211522020 isRetracted "false" @default.