Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211550223> ?p ?o ?g. }
- W3211550223 endingPage "157" @default.
- W3211550223 startingPage "129" @default.
- W3211550223 abstract "It is helpful to consider the variations in a shale formation's brittleness and total organic carbon (TOC) when considering which zones to target for drilling and fracture stimulation. Zones with relatively high brittleness combined with relatively high TOC are likely to yield more gas at higher flow rates. Brittleness is a complex characteristic which is not readily calculated formulaically as a rock property from petrophysical log variables. Likewise, although empirical relationships between well logs, specifically bulk density, resistivity and gamma ray and TOC are established, they tend not to perform consistently in all shale formations. Measuring brittleness and TOC in the laboratory is costly and time consuming, making machine learning (ML) methods to predict these variables from basic well log information appealing. A mineralogical brittleness index and TOC values measured from rock samples in control wells can be used to calibrate supervised ML. This enables these metrics to then be predicted from well log data in wells where no measured mineralogical data is available. Transparent optimized data-matching tools can be usefully applied for this purpose to provide substantial insight to variations existing across shale formations. A case study demonstrating this is presented for two wells drilled in the Lower Barnett Shale (Texas, USA). The transparent open box (TOB) algorithm generates highly accurate supervised-learning predictions of brittleness index and TOC using data from five well log curves and stratigraphic height. Its prediction accuracy improves with a higher sampling density of the well-log curves. Banner headline Combining information from a mineralogical brittleness index and total organic carbon provides useful guidance on the most favorable zones of an organic-rich shale to drill and fracture stimulate. Both variables require costly laboratory measurements and are not easily and consistently estimated from well-log data using available empirical formulas. Transparent optimized data matching machine learning offers an effective and accurate tool for predicting these metrics from well-log curves particularly when they are sampled at high densities." @default.
- W3211550223 created "2021-11-22" @default.
- W3211550223 creator A5028777364 @default.
- W3211550223 date "2022-01-01" @default.
- W3211550223 modified "2023-10-02" @default.
- W3211550223 title "Assessing the brittleness and total organic carbon of shale formations and their role in identifying optimum zones to fracture stimulate" @default.
- W3211550223 cites W1851751697 @default.
- W3211550223 cites W1968313366 @default.
- W3211550223 cites W1968716244 @default.
- W3211550223 cites W1970393795 @default.
- W3211550223 cites W1975255514 @default.
- W3211550223 cites W1987597933 @default.
- W3211550223 cites W2014952397 @default.
- W3211550223 cites W2032658593 @default.
- W3211550223 cites W2036319892 @default.
- W3211550223 cites W2058508209 @default.
- W3211550223 cites W2061127522 @default.
- W3211550223 cites W2065215779 @default.
- W3211550223 cites W2070136040 @default.
- W3211550223 cites W2072613134 @default.
- W3211550223 cites W2085730657 @default.
- W3211550223 cites W2093476257 @default.
- W3211550223 cites W2108639531 @default.
- W3211550223 cites W2133333957 @default.
- W3211550223 cites W2147937847 @default.
- W3211550223 cites W2170995602 @default.
- W3211550223 cites W2275398817 @default.
- W3211550223 cites W2289797057 @default.
- W3211550223 cites W2324574829 @default.
- W3211550223 cites W2332675291 @default.
- W3211550223 cites W2402383939 @default.
- W3211550223 cites W2406819072 @default.
- W3211550223 cites W2474843592 @default.
- W3211550223 cites W2519506315 @default.
- W3211550223 cites W2528475167 @default.
- W3211550223 cites W2611625434 @default.
- W3211550223 cites W2626176756 @default.
- W3211550223 cites W2775488500 @default.
- W3211550223 cites W2780181437 @default.
- W3211550223 cites W2795176283 @default.
- W3211550223 cites W2896712786 @default.
- W3211550223 cites W2901481904 @default.
- W3211550223 cites W2925104363 @default.
- W3211550223 cites W3049298465 @default.
- W3211550223 cites W3143909073 @default.
- W3211550223 cites W649782683 @default.
- W3211550223 cites W878685764 @default.
- W3211550223 doi "https://doi.org/10.1016/b978-0-323-85465-8.00014-5" @default.
- W3211550223 hasPublicationYear "2022" @default.
- W3211550223 type Work @default.
- W3211550223 sameAs 3211550223 @default.
- W3211550223 citedByCount "1" @default.
- W3211550223 countsByYear W32115502232023 @default.
- W3211550223 crossrefType "book-chapter" @default.
- W3211550223 hasAuthorship W3211550223A5028777364 @default.
- W3211550223 hasConcept C127313418 @default.
- W3211550223 hasConcept C127413603 @default.
- W3211550223 hasConcept C136478896 @default.
- W3211550223 hasConcept C151730666 @default.
- W3211550223 hasConcept C153127940 @default.
- W3211550223 hasConcept C158787203 @default.
- W3211550223 hasConcept C159390177 @default.
- W3211550223 hasConcept C159985019 @default.
- W3211550223 hasConcept C187320778 @default.
- W3211550223 hasConcept C18903297 @default.
- W3211550223 hasConcept C192562407 @default.
- W3211550223 hasConcept C199289684 @default.
- W3211550223 hasConcept C25197100 @default.
- W3211550223 hasConcept C35817400 @default.
- W3211550223 hasConcept C46293882 @default.
- W3211550223 hasConcept C5900021 @default.
- W3211550223 hasConcept C6648577 @default.
- W3211550223 hasConcept C78519656 @default.
- W3211550223 hasConcept C78762247 @default.
- W3211550223 hasConcept C86803240 @default.
- W3211550223 hasConceptScore W3211550223C127313418 @default.
- W3211550223 hasConceptScore W3211550223C127413603 @default.
- W3211550223 hasConceptScore W3211550223C136478896 @default.
- W3211550223 hasConceptScore W3211550223C151730666 @default.
- W3211550223 hasConceptScore W3211550223C153127940 @default.
- W3211550223 hasConceptScore W3211550223C158787203 @default.
- W3211550223 hasConceptScore W3211550223C159390177 @default.
- W3211550223 hasConceptScore W3211550223C159985019 @default.
- W3211550223 hasConceptScore W3211550223C187320778 @default.
- W3211550223 hasConceptScore W3211550223C18903297 @default.
- W3211550223 hasConceptScore W3211550223C192562407 @default.
- W3211550223 hasConceptScore W3211550223C199289684 @default.
- W3211550223 hasConceptScore W3211550223C25197100 @default.
- W3211550223 hasConceptScore W3211550223C35817400 @default.
- W3211550223 hasConceptScore W3211550223C46293882 @default.
- W3211550223 hasConceptScore W3211550223C5900021 @default.
- W3211550223 hasConceptScore W3211550223C6648577 @default.
- W3211550223 hasConceptScore W3211550223C78519656 @default.
- W3211550223 hasConceptScore W3211550223C78762247 @default.
- W3211550223 hasConceptScore W3211550223C86803240 @default.
- W3211550223 hasLocation W32115502231 @default.
- W3211550223 hasOpenAccess W3211550223 @default.
- W3211550223 hasPrimaryLocation W32115502231 @default.