Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211580529> ?p ?o ?g. }
- W3211580529 endingPage "104947" @default.
- W3211580529 startingPage "104947" @default.
- W3211580529 abstract "Undoubtedly, all applied sciences are closely corresponding to differential equations, especially partial differential equations. This contribution aims to examine the efficiency of a modified version of the generalized exponential rational function method in solving some well-known nonlinear evolution equations. The investigated models in this article include the Zakharov–Kuznetsov, the cubic Boussinesq, and the modified regularized long-wave equation. In the structure of these solutions, various familiar elementary functions, including exponential, trigonometric, and hyperbolic functions are used. This important feature makes it easy to use these solutions in real applications. Numerical behaviors corresponding to the obtained solutions have been demonstrated through some three-dimensional diagrams in the article. This technique can be also adopted in determining wave soliton solution to other equations with partial derivatives. • Analytical solutions to several nonlinear evolution equations are obtained. • We utilized a modified version of the generalized exponential rational function method. • The acquired solutions are new and have not been reported before. • The employed methodology is also adaptable in solving other nonlinear equations." @default.
- W3211580529 created "2021-11-22" @default.
- W3211580529 creator A5003262205 @default.
- W3211580529 creator A5003742668 @default.
- W3211580529 creator A5006399853 @default.
- W3211580529 creator A5025217055 @default.
- W3211580529 creator A5028799043 @default.
- W3211580529 creator A5038974339 @default.
- W3211580529 creator A5039190414 @default.
- W3211580529 creator A5055352469 @default.
- W3211580529 date "2021-11-01" @default.
- W3211580529 modified "2023-10-12" @default.
- W3211580529 title "Classes of new analytical soliton solutions to some nonlinear evolution equations" @default.
- W3211580529 cites W12929161 @default.
- W3211580529 cites W1966928695 @default.
- W3211580529 cites W1968315767 @default.
- W3211580529 cites W2028957054 @default.
- W3211580529 cites W2036153086 @default.
- W3211580529 cites W2037481461 @default.
- W3211580529 cites W2039581583 @default.
- W3211580529 cites W2039681904 @default.
- W3211580529 cites W2059505709 @default.
- W3211580529 cites W2087535766 @default.
- W3211580529 cites W2095746279 @default.
- W3211580529 cites W2172414120 @default.
- W3211580529 cites W2320950607 @default.
- W3211580529 cites W2414472952 @default.
- W3211580529 cites W2528820072 @default.
- W3211580529 cites W2531592927 @default.
- W3211580529 cites W2562646991 @default.
- W3211580529 cites W2564194003 @default.
- W3211580529 cites W2592990480 @default.
- W3211580529 cites W2612151698 @default.
- W3211580529 cites W2744953953 @default.
- W3211580529 cites W2754992213 @default.
- W3211580529 cites W2760655445 @default.
- W3211580529 cites W2766945832 @default.
- W3211580529 cites W2792277290 @default.
- W3211580529 cites W2796990500 @default.
- W3211580529 cites W2884605149 @default.
- W3211580529 cites W2887404322 @default.
- W3211580529 cites W2887442605 @default.
- W3211580529 cites W2893899864 @default.
- W3211580529 cites W2896913575 @default.
- W3211580529 cites W2908453249 @default.
- W3211580529 cites W2919736785 @default.
- W3211580529 cites W2921938266 @default.
- W3211580529 cites W2968046733 @default.
- W3211580529 cites W2980079197 @default.
- W3211580529 cites W2992032327 @default.
- W3211580529 cites W2997909329 @default.
- W3211580529 cites W2999489234 @default.
- W3211580529 cites W3001290849 @default.
- W3211580529 cites W3004128881 @default.
- W3211580529 cites W3016427037 @default.
- W3211580529 cites W3019538054 @default.
- W3211580529 cites W3019593169 @default.
- W3211580529 cites W3023220629 @default.
- W3211580529 cites W3024925239 @default.
- W3211580529 cites W3040194299 @default.
- W3211580529 cites W3042761298 @default.
- W3211580529 cites W3045975643 @default.
- W3211580529 cites W3048628790 @default.
- W3211580529 cites W3082169598 @default.
- W3211580529 cites W3083893918 @default.
- W3211580529 cites W3084196999 @default.
- W3211580529 cites W3084360845 @default.
- W3211580529 cites W3087457625 @default.
- W3211580529 cites W3091020047 @default.
- W3211580529 cites W3091484551 @default.
- W3211580529 cites W3093175427 @default.
- W3211580529 cites W3095821074 @default.
- W3211580529 cites W3107438720 @default.
- W3211580529 cites W3112018172 @default.
- W3211580529 cites W3119319709 @default.
- W3211580529 cites W3119559886 @default.
- W3211580529 cites W3124560684 @default.
- W3211580529 cites W3128660301 @default.
- W3211580529 cites W3129666057 @default.
- W3211580529 cites W3131183608 @default.
- W3211580529 cites W3135949739 @default.
- W3211580529 cites W3140564856 @default.
- W3211580529 cites W3163844753 @default.
- W3211580529 cites W3170040506 @default.
- W3211580529 cites W3171203743 @default.
- W3211580529 cites W3171331662 @default.
- W3211580529 cites W3185455231 @default.
- W3211580529 cites W3193225244 @default.
- W3211580529 cites W3195428251 @default.
- W3211580529 cites W3199460457 @default.
- W3211580529 doi "https://doi.org/10.1016/j.rinp.2021.104947" @default.
- W3211580529 hasPublicationYear "2021" @default.
- W3211580529 type Work @default.
- W3211580529 sameAs 3211580529 @default.
- W3211580529 citedByCount "3" @default.
- W3211580529 countsByYear W32115805292022 @default.
- W3211580529 crossrefType "journal-article" @default.
- W3211580529 hasAuthorship W3211580529A5003262205 @default.