Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211593446> ?p ?o ?g. }
- W3211593446 endingPage "13" @default.
- W3211593446 startingPage "1" @default.
- W3211593446 abstract "Abstract This paper describes feature-based techniques for wood knot classification. For automated classification of macroscopic wood knot images, models were established using artificial neural networks with texture and local feature descriptors, and the performances of feature extraction algorithms were compared. Classification models trained with texture descriptors, gray-level co-occurrence matrix and local binary pattern, achieved better performance than those trained with local feature descriptors, scale-invariant feature transform and dense scale-invariant feature transform. Hence, it was confirmed that wood knot classification was more appropriate for texture classification rather than an approach based on morphological classification. The gray-level co-occurrence matrix produced the highest F1 score despite representing images with relatively low-dimensional feature vectors. The scale-invariant feature transform algorithm could not detect a sufficient number of features from the knot images; hence, the histogram of oriented gradients and dense scale-invariant feature transform algorithms that describe the entire image were better for wood knot classification. The artificial neural network model provided better classification performance than the support vector machine and k -nearest neighbor models, which suggests the suitability of the nonlinear classification model for wood knot classification." @default.
- W3211593446 created "2021-11-22" @default.
- W3211593446 creator A5001717474 @default.
- W3211593446 creator A5029619036 @default.
- W3211593446 creator A5037868500 @default.
- W3211593446 creator A5059549858 @default.
- W3211593446 creator A5069806436 @default.
- W3211593446 creator A5074106482 @default.
- W3211593446 date "2021-01-01" @default.
- W3211593446 modified "2023-10-08" @default.
- W3211593446 title "Classification of wood knots using artificial neural networks with texture and local feature-based image descriptors" @default.
- W3211593446 cites W138736511 @default.
- W3211593446 cites W1747575800 @default.
- W3211593446 cites W1975013850 @default.
- W3211593446 cites W1995852018 @default.
- W3211593446 cites W2021048678 @default.
- W3211593446 cites W2039051707 @default.
- W3211593446 cites W2040207753 @default.
- W3211593446 cites W2044465660 @default.
- W3211593446 cites W2052550738 @default.
- W3211593446 cites W2079503924 @default.
- W3211593446 cites W2090518410 @default.
- W3211593446 cites W2106583169 @default.
- W3211593446 cites W2107317011 @default.
- W3211593446 cites W2119605622 @default.
- W3211593446 cites W2125226686 @default.
- W3211593446 cites W2131032989 @default.
- W3211593446 cites W2151103935 @default.
- W3211593446 cites W2161969291 @default.
- W3211593446 cites W2163352848 @default.
- W3211593446 cites W2167666191 @default.
- W3211593446 cites W2294120432 @default.
- W3211593446 cites W2417603757 @default.
- W3211593446 cites W2547340572 @default.
- W3211593446 cites W2589306531 @default.
- W3211593446 cites W2614851820 @default.
- W3211593446 cites W2768052468 @default.
- W3211593446 cites W2890518964 @default.
- W3211593446 cites W2963661548 @default.
- W3211593446 cites W2970648063 @default.
- W3211593446 cites W2986442261 @default.
- W3211593446 cites W2994590618 @default.
- W3211593446 cites W3009428189 @default.
- W3211593446 cites W3017279610 @default.
- W3211593446 cites W3023150638 @default.
- W3211593446 cites W3037361119 @default.
- W3211593446 cites W3037422953 @default.
- W3211593446 cites W3046700873 @default.
- W3211593446 cites W778797321 @default.
- W3211593446 cites W803264970 @default.
- W3211593446 doi "https://doi.org/10.1515/hf-2021-0051" @default.
- W3211593446 hasPublicationYear "2021" @default.
- W3211593446 type Work @default.
- W3211593446 sameAs 3211593446 @default.
- W3211593446 citedByCount "8" @default.
- W3211593446 countsByYear W32115934462022 @default.
- W3211593446 countsByYear W32115934462023 @default.
- W3211593446 crossrefType "journal-article" @default.
- W3211593446 hasAuthorship W3211593446A5001717474 @default.
- W3211593446 hasAuthorship W3211593446A5029619036 @default.
- W3211593446 hasAuthorship W3211593446A5037868500 @default.
- W3211593446 hasAuthorship W3211593446A5059549858 @default.
- W3211593446 hasAuthorship W3211593446A5069806436 @default.
- W3211593446 hasAuthorship W3211593446A5074106482 @default.
- W3211593446 hasBestOaLocation W32115934461 @default.
- W3211593446 hasConcept C113238511 @default.
- W3211593446 hasConcept C115961682 @default.
- W3211593446 hasConcept C12267149 @default.
- W3211593446 hasConcept C153180895 @default.
- W3211593446 hasConcept C154945302 @default.
- W3211593446 hasConcept C17426736 @default.
- W3211593446 hasConcept C33923547 @default.
- W3211593446 hasConcept C41008148 @default.
- W3211593446 hasConcept C50644808 @default.
- W3211593446 hasConcept C52622490 @default.
- W3211593446 hasConcept C53533937 @default.
- W3211593446 hasConcept C75294576 @default.
- W3211593446 hasConcept C83665646 @default.
- W3211593446 hasConcept C87335442 @default.
- W3211593446 hasConceptScore W3211593446C113238511 @default.
- W3211593446 hasConceptScore W3211593446C115961682 @default.
- W3211593446 hasConceptScore W3211593446C12267149 @default.
- W3211593446 hasConceptScore W3211593446C153180895 @default.
- W3211593446 hasConceptScore W3211593446C154945302 @default.
- W3211593446 hasConceptScore W3211593446C17426736 @default.
- W3211593446 hasConceptScore W3211593446C33923547 @default.
- W3211593446 hasConceptScore W3211593446C41008148 @default.
- W3211593446 hasConceptScore W3211593446C50644808 @default.
- W3211593446 hasConceptScore W3211593446C52622490 @default.
- W3211593446 hasConceptScore W3211593446C53533937 @default.
- W3211593446 hasConceptScore W3211593446C75294576 @default.
- W3211593446 hasConceptScore W3211593446C83665646 @default.
- W3211593446 hasConceptScore W3211593446C87335442 @default.
- W3211593446 hasIssue "1" @default.
- W3211593446 hasLocation W32115934461 @default.
- W3211593446 hasOpenAccess W3211593446 @default.
- W3211593446 hasPrimaryLocation W32115934461 @default.
- W3211593446 hasRelatedWork W1974672153 @default.