Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211626409> ?p ?o ?g. }
- W3211626409 abstract "Learning the embeddings for urban regions from human mobility data can reveal the functionality of regions, and then enables the correlated but distinct tasks such as crime prediction. Human mobility data contains rich but abundant information, which yields to the comprehensive region embeddings for cross domain tasks. In this paper, we propose multi-graph fusion networks (MGFN) to enable the cross domain prediction tasks. First, we integrate the graphs with spatio-temporal similarity as mobility patterns through a mobility graph fusion module. Then, in the mobility pattern joint learning module, we design the multi-level cross-attention mechanism to learn the comprehensive embeddings from multiple mobility patterns based on intra-pattern and inter-pattern messages. Finally, we conduct extensive experiments on real-world urban datasets. Experimental results demonstrate that the proposed MGFN outperforms the state-of-the-art methods by up to 12.35% improvement. https://github.com/wushangbin/MGFN" @default.
- W3211626409 created "2021-11-22" @default.
- W3211626409 creator A5008053615 @default.
- W3211626409 creator A5016213548 @default.
- W3211626409 creator A5018143257 @default.
- W3211626409 creator A5058632762 @default.
- W3211626409 creator A5088981076 @default.
- W3211626409 date "2022-07-01" @default.
- W3211626409 modified "2023-10-02" @default.
- W3211626409 title "FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning" @default.
- W3211626409 cites W1821462560 @default.
- W3211626409 cites W2027595342 @default.
- W3211626409 cites W2051267297 @default.
- W3211626409 cites W2125389028 @default.
- W3211626409 cites W2149466042 @default.
- W3211626409 cites W2173520492 @default.
- W3211626409 cites W2541884796 @default.
- W3211626409 cites W2579186979 @default.
- W3211626409 cites W2591882872 @default.
- W3211626409 cites W2750384547 @default.
- W3211626409 cites W2777914285 @default.
- W3211626409 cites W2781091734 @default.
- W3211626409 cites W2899730059 @default.
- W3211626409 cites W2903470619 @default.
- W3211626409 cites W2955213239 @default.
- W3211626409 cites W2963209930 @default.
- W3211626409 cites W2963306805 @default.
- W3211626409 cites W2964162474 @default.
- W3211626409 cites W2980113592 @default.
- W3211626409 cites W2981206218 @default.
- W3211626409 cites W2981720610 @default.
- W3211626409 cites W2995022099 @default.
- W3211626409 cites W2996786840 @default.
- W3211626409 cites W2998600867 @default.
- W3211626409 cites W3000479830 @default.
- W3211626409 cites W3016632787 @default.
- W3211626409 cites W3034243226 @default.
- W3211626409 cites W3038022836 @default.
- W3211626409 cites W3105285631 @default.
- W3211626409 cites W3105298093 @default.
- W3211626409 cites W3108940306 @default.
- W3211626409 cites W3118608800 @default.
- W3211626409 cites W3127133996 @default.
- W3211626409 cites W3152808371 @default.
- W3211626409 cites W3158675315 @default.
- W3211626409 cites W3169682907 @default.
- W3211626409 cites W3182158470 @default.
- W3211626409 cites W3193989161 @default.
- W3211626409 cites W3203272921 @default.
- W3211626409 doi "https://doi.org/10.24963/ijcai.2022/321" @default.
- W3211626409 hasPublicationYear "2022" @default.
- W3211626409 type Work @default.
- W3211626409 sameAs 3211626409 @default.
- W3211626409 citedByCount "3" @default.
- W3211626409 countsByYear W32116264092023 @default.
- W3211626409 crossrefType "proceedings-article" @default.
- W3211626409 hasAuthorship W3211626409A5008053615 @default.
- W3211626409 hasAuthorship W3211626409A5016213548 @default.
- W3211626409 hasAuthorship W3211626409A5018143257 @default.
- W3211626409 hasAuthorship W3211626409A5058632762 @default.
- W3211626409 hasAuthorship W3211626409A5088981076 @default.
- W3211626409 hasBestOaLocation W32116264091 @default.
- W3211626409 hasConcept C103278499 @default.
- W3211626409 hasConcept C115961682 @default.
- W3211626409 hasConcept C119857082 @default.
- W3211626409 hasConcept C124101348 @default.
- W3211626409 hasConcept C132525143 @default.
- W3211626409 hasConcept C134306372 @default.
- W3211626409 hasConcept C153083717 @default.
- W3211626409 hasConcept C154945302 @default.
- W3211626409 hasConcept C33923547 @default.
- W3211626409 hasConcept C36503486 @default.
- W3211626409 hasConcept C41008148 @default.
- W3211626409 hasConcept C80444323 @default.
- W3211626409 hasConceptScore W3211626409C103278499 @default.
- W3211626409 hasConceptScore W3211626409C115961682 @default.
- W3211626409 hasConceptScore W3211626409C119857082 @default.
- W3211626409 hasConceptScore W3211626409C124101348 @default.
- W3211626409 hasConceptScore W3211626409C132525143 @default.
- W3211626409 hasConceptScore W3211626409C134306372 @default.
- W3211626409 hasConceptScore W3211626409C153083717 @default.
- W3211626409 hasConceptScore W3211626409C154945302 @default.
- W3211626409 hasConceptScore W3211626409C33923547 @default.
- W3211626409 hasConceptScore W3211626409C36503486 @default.
- W3211626409 hasConceptScore W3211626409C41008148 @default.
- W3211626409 hasConceptScore W3211626409C80444323 @default.
- W3211626409 hasLocation W32116264091 @default.
- W3211626409 hasLocation W32116264092 @default.
- W3211626409 hasLocation W32116264093 @default.
- W3211626409 hasOpenAccess W3211626409 @default.
- W3211626409 hasPrimaryLocation W32116264091 @default.
- W3211626409 hasRelatedWork W2961085424 @default.
- W3211626409 hasRelatedWork W3046775127 @default.
- W3211626409 hasRelatedWork W3170094116 @default.
- W3211626409 hasRelatedWork W4205958290 @default.
- W3211626409 hasRelatedWork W4285260836 @default.
- W3211626409 hasRelatedWork W4286629047 @default.
- W3211626409 hasRelatedWork W4306321456 @default.
- W3211626409 hasRelatedWork W4306674287 @default.
- W3211626409 hasRelatedWork W4386462264 @default.