Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211629182> ?p ?o ?g. }
- W3211629182 endingPage "4238" @default.
- W3211629182 startingPage "4229" @default.
- W3211629182 abstract "ConspectusSimulating molecular dynamics (MD) within a comprehensive quantum framework has been a long-standing challenge in computational chemistry. An exponential scaling of computational cost renders solving the time dependent Schrödinger equation (TDSE) of a molecular Hamiltonian, including both electronic and nuclear degrees of freedom (DOFs), as well as their couplings, infeasible for more than a few DOFs. In the Born-Oppenheimer (BO), or adiabatic, picture, electronic and nuclear parts of the wave function are decoupled and treated separately. Within this framework, the nuclear wave function evolves along potential energy surfaces (PESs) computed as solutions to the electronic Schrödinger equation parametrized in the nuclear DOFs. This approximation, together with increasingly elaborate numerical approaches to solve the nuclear time dependent Schrödinger equation (TDSE), enabled the treatment of up to a few dozens of degrees of freedom (DOFs). However, for particular applications, such as photochemistry, the BO approximation breaks down. In this regime of non-adiabatic dynamics, solving the full molecular problem including electron-nuclear couplings becomes essential, further increasing the complexity of the numerical solution. Although valuable methods such as multiconfigurational time-dependent Hartree (MCTDH) have been proposed for the solution of the coupled electron-nuclear dynamics, they remain hampered by an exponential scaling in the number of nuclear DOFs and by the difficulty of finding universal variational forms.In this Account, we present a perspective on novel quantum computational algorithms, aiming to alleviate the exponential scaling inherent to the simulation of many-body quantum dynamics. In particular, we focus on the derivation and application of quantum algorithms for adiabatic and non-adiabatic quantum dynamics, which include efficient approaches for the calculation of the BO potential energy surfaces (PESs). Thereafter, we study the time-evolution of a model system consisting of two coupled PESs in first and second quantization. In a first application, we discuss a recently introduced quantum algorithm for the evolution of a wavepacket in first quantization and exploit the potential quantum advantage of mapping its spatial grid representation to logarithmically many qubits. For the second demonstration, we move to the second quantization framework and review the scaling properties of two alternative time-evolution algorithms, namely, a variational quantum algorithm (VQA) (based on the McLachlan variational principle) and conventional Trotter-type evolution (based on a Lie-Trotter-Suzuki formula). Both methods clearly demonstrate the potential of quantum algorithms and their favorable scaling compared to the available classical approaches. However, a clear demonstration of quantum advantage in the context of molecular quantum dynamics may require the implementation of these algorithms in fault-tolerant quantum computers, while their application in near-term, noisy quantum devices is still unclear and deserves further investigation." @default.
- W3211629182 created "2021-11-22" @default.
- W3211629182 creator A5001223912 @default.
- W3211629182 creator A5038201804 @default.
- W3211629182 creator A5071232488 @default.
- W3211629182 date "2021-11-17" @default.
- W3211629182 modified "2023-10-16" @default.
- W3211629182 title "Molecular Quantum Dynamics: A Quantum Computing Perspective" @default.
- W3211629182 cites W1981537062 @default.
- W3211629182 cites W1997126380 @default.
- W3211629182 cites W2014690015 @default.
- W3211629182 cites W2015606016 @default.
- W3211629182 cites W2054647191 @default.
- W3211629182 cites W2055032509 @default.
- W3211629182 cites W2058497143 @default.
- W3211629182 cites W2060628712 @default.
- W3211629182 cites W2061056711 @default.
- W3211629182 cites W2072105247 @default.
- W3211629182 cites W2090889097 @default.
- W3211629182 cites W2091237955 @default.
- W3211629182 cites W2098614082 @default.
- W3211629182 cites W2103794950 @default.
- W3211629182 cites W2112699581 @default.
- W3211629182 cites W2161685427 @default.
- W3211629182 cites W2168851031 @default.
- W3211629182 cites W2254754114 @default.
- W3211629182 cites W2257937122 @default.
- W3211629182 cites W2297918601 @default.
- W3211629182 cites W2486314769 @default.
- W3211629182 cites W2491218394 @default.
- W3211629182 cites W2626969198 @default.
- W3211629182 cites W2755255888 @default.
- W3211629182 cites W2760696651 @default.
- W3211629182 cites W2786827898 @default.
- W3211629182 cites W2803086154 @default.
- W3211629182 cites W2803208764 @default.
- W3211629182 cites W2806391486 @default.
- W3211629182 cites W2895777514 @default.
- W3211629182 cites W2903221501 @default.
- W3211629182 cites W2908019568 @default.
- W3211629182 cites W2923370183 @default.
- W3211629182 cites W2954369586 @default.
- W3211629182 cites W2957863287 @default.
- W3211629182 cites W2963239445 @default.
- W3211629182 cites W2974106859 @default.
- W3211629182 cites W2975429865 @default.
- W3211629182 cites W2979788593 @default.
- W3211629182 cites W2981524394 @default.
- W3211629182 cites W2995465990 @default.
- W3211629182 cites W2996317883 @default.
- W3211629182 cites W2997872610 @default.
- W3211629182 cites W3013067859 @default.
- W3211629182 cites W3021518424 @default.
- W3211629182 cites W3036744022 @default.
- W3211629182 cites W3044494695 @default.
- W3211629182 cites W3096987870 @default.
- W3211629182 cites W3099200606 @default.
- W3211629182 cites W3100459566 @default.
- W3211629182 cites W3101636216 @default.
- W3211629182 cites W3101709574 @default.
- W3211629182 cites W3103810096 @default.
- W3211629182 cites W3103872322 @default.
- W3211629182 cites W3104249496 @default.
- W3211629182 cites W3104387735 @default.
- W3211629182 cites W3105532889 @default.
- W3211629182 cites W3105550380 @default.
- W3211629182 cites W3106047133 @default.
- W3211629182 cites W3130300377 @default.
- W3211629182 cites W3156833397 @default.
- W3211629182 cites W3187303987 @default.
- W3211629182 cites W3209561181 @default.
- W3211629182 cites W3214298557 @default.
- W3211629182 doi "https://doi.org/10.1021/acs.accounts.1c00514" @default.
- W3211629182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34787398" @default.
- W3211629182 hasPublicationYear "2021" @default.
- W3211629182 type Work @default.
- W3211629182 sameAs 3211629182 @default.
- W3211629182 citedByCount "20" @default.
- W3211629182 countsByYear W32116291822022 @default.
- W3211629182 countsByYear W32116291822023 @default.
- W3211629182 crossrefType "journal-article" @default.
- W3211629182 hasAuthorship W3211629182A5001223912 @default.
- W3211629182 hasAuthorship W3211629182A5038201804 @default.
- W3211629182 hasAuthorship W3211629182A5071232488 @default.
- W3211629182 hasConcept C109663097 @default.
- W3211629182 hasConcept C113603373 @default.
- W3211629182 hasConcept C121332964 @default.
- W3211629182 hasConcept C121864883 @default.
- W3211629182 hasConcept C126255220 @default.
- W3211629182 hasConcept C130787639 @default.
- W3211629182 hasConcept C145196801 @default.
- W3211629182 hasConcept C15184713 @default.
- W3211629182 hasConcept C208081375 @default.
- W3211629182 hasConcept C2524010 @default.
- W3211629182 hasConcept C33923547 @default.
- W3211629182 hasConcept C40560622 @default.
- W3211629182 hasConcept C59593255 @default.
- W3211629182 hasConcept C62520636 @default.