Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211636833> ?p ?o ?g. }
- W3211636833 endingPage "4591" @default.
- W3211636833 startingPage "4591" @default.
- W3211636833 abstract "Urban river networks have the characteristics of medium and micro scales, complex water quality, rapid change, and time–space incoherence. Aiming to monitor the water quality accurately, it is necessary to extract suitable features and establish a universal inversion model for key water quality parameters. In this paper, we describe a spectral- and spatial-feature-integrated ensemble learning method for urban river network water quality grading. We proposed an in situ sampling method for urban river networks. Factor and correlation analyses were applied to extract the spectral features. Moreover, we analyzed the maximum allowed bandwidth for feature bands. We demonstrated that spatial features can improve the accuracy of water quality grading using kernel canonical correlation analysis (KCCA). Based on the spectral and spatial features, an ensemble learning model was established for total phosphorus (TP) and ammonia nitrogen (NH3-N). Both models were evaluated by means of fivefold validation. Furthermore, we proposed an unmanned aerial vehicle (UAV)-borne water quality multispectral remote sensing application process for urban river networks. Based on the process, we tested the model in practice. The experiment confirmed that our model can improve the grading accuracy by 30% compared to other machine learning models that use only spectral features. Our research can extend the application field of water quality remote sensing to complex urban river networks." @default.
- W3211636833 created "2021-11-22" @default.
- W3211636833 creator A5003338971 @default.
- W3211636833 creator A5003709575 @default.
- W3211636833 creator A5018998702 @default.
- W3211636833 creator A5049895203 @default.
- W3211636833 creator A5066358695 @default.
- W3211636833 date "2021-11-15" @default.
- W3211636833 modified "2023-09-28" @default.
- W3211636833 title "Spectral and Spatial Feature Integrated Ensemble Learning Method for Grading Urban River Network Water Quality" @default.
- W3211636833 cites W1058221833 @default.
- W3211636833 cites W1932531222 @default.
- W3211636833 cites W1986944021 @default.
- W3211636833 cites W1991846291 @default.
- W3211636833 cites W2008606151 @default.
- W3211636833 cites W2012900798 @default.
- W3211636833 cites W2045297017 @default.
- W3211636833 cites W2047677741 @default.
- W3211636833 cites W2060489269 @default.
- W3211636833 cites W2064219338 @default.
- W3211636833 cites W2066172140 @default.
- W3211636833 cites W2083272290 @default.
- W3211636833 cites W2089043188 @default.
- W3211636833 cites W2100349144 @default.
- W3211636833 cites W2100751507 @default.
- W3211636833 cites W2112491887 @default.
- W3211636833 cites W2116093188 @default.
- W3211636833 cites W2125240520 @default.
- W3211636833 cites W2161523635 @default.
- W3211636833 cites W2323329867 @default.
- W3211636833 cites W2327037637 @default.
- W3211636833 cites W2346991786 @default.
- W3211636833 cites W2379947222 @default.
- W3211636833 cites W2478587991 @default.
- W3211636833 cites W2513884524 @default.
- W3211636833 cites W2590806697 @default.
- W3211636833 cites W2613927007 @default.
- W3211636833 cites W2763957358 @default.
- W3211636833 cites W2764084117 @default.
- W3211636833 cites W2792929721 @default.
- W3211636833 cites W2804002326 @default.
- W3211636833 cites W2891166038 @default.
- W3211636833 cites W2891320163 @default.
- W3211636833 cites W2895037565 @default.
- W3211636833 cites W2904249333 @default.
- W3211636833 cites W2912137537 @default.
- W3211636833 cites W2913373042 @default.
- W3211636833 cites W2922146558 @default.
- W3211636833 cites W2932009381 @default.
- W3211636833 cites W2945291386 @default.
- W3211636833 cites W2966404271 @default.
- W3211636833 cites W2970602317 @default.
- W3211636833 cites W2971752124 @default.
- W3211636833 cites W2978212941 @default.
- W3211636833 cites W2980960531 @default.
- W3211636833 cites W2981982375 @default.
- W3211636833 cites W2990605497 @default.
- W3211636833 cites W3001145258 @default.
- W3211636833 cites W3002387699 @default.
- W3211636833 cites W3002705323 @default.
- W3211636833 cites W3006671182 @default.
- W3211636833 cites W3009005808 @default.
- W3211636833 cites W3011988525 @default.
- W3211636833 cites W3012957231 @default.
- W3211636833 cites W3016472101 @default.
- W3211636833 cites W3018952706 @default.
- W3211636833 cites W3043134308 @default.
- W3211636833 cites W3047326925 @default.
- W3211636833 cites W3080713741 @default.
- W3211636833 cites W3082500033 @default.
- W3211636833 cites W3089958506 @default.
- W3211636833 cites W3092247021 @default.
- W3211636833 cites W3105100264 @default.
- W3211636833 cites W3133587645 @default.
- W3211636833 cites W3134558491 @default.
- W3211636833 cites W3149750001 @default.
- W3211636833 doi "https://doi.org/10.3390/rs13224591" @default.
- W3211636833 hasPublicationYear "2021" @default.
- W3211636833 type Work @default.
- W3211636833 sameAs 3211636833 @default.
- W3211636833 citedByCount "7" @default.
- W3211636833 countsByYear W32116368332022 @default.
- W3211636833 countsByYear W32116368332023 @default.
- W3211636833 crossrefType "journal-article" @default.
- W3211636833 hasAuthorship W3211636833A5003338971 @default.
- W3211636833 hasAuthorship W3211636833A5003709575 @default.
- W3211636833 hasAuthorship W3211636833A5018998702 @default.
- W3211636833 hasAuthorship W3211636833A5049895203 @default.
- W3211636833 hasAuthorship W3211636833A5066358695 @default.
- W3211636833 hasBestOaLocation W32116368331 @default.
- W3211636833 hasConcept C124101348 @default.
- W3211636833 hasConcept C127413603 @default.
- W3211636833 hasConcept C147176958 @default.
- W3211636833 hasConcept C153180895 @default.
- W3211636833 hasConcept C154945302 @default.
- W3211636833 hasConcept C173163844 @default.
- W3211636833 hasConcept C18903297 @default.
- W3211636833 hasConcept C205649164 @default.