Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211659102> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3211659102 endingPage "108087" @default.
- W3211659102 startingPage "108087" @default.
- W3211659102 abstract "The groups mentioned in the title are certain matrix groups of infinite size over a finite field $mathbb F_q$. They are built from finite classical groups and at the same time they are similar to reductive $p$-adic Lie groups. In the present paper, we initiate the study of invariant measures for the coadjoint action of these infinite-dimensional groups. We examine first the group $mathbb{GLB}$, a topological completion of the inductive limit group $varinjlim GL(n, mathbb F_q)$. As was shown by Gorin, Kerov, and Vershik [arXiv:1209.4945], the traceable factor representations of $mathbb{GLB}$ admit a complete classification, achieved in terms of harmonic functions on the Young graph $mathbb Y$. We show that there exists a parallel theory for ergodic coadjoint-invariant measures, which is linked with a deformed version of harmonic functions on $mathbb Y$. Here the deformation means that the edges of $mathbb Y$ are endowed with certain formal multiplicities coming from the simplest version of Pieri rule (multiplication by the first power sum $p_1$) for the Hall-Littlewood (HL) symmetric functions with parameter $t:=q^{-1}$. This fact serves as a prelude to our main results, which concern topological completions of two inductive limit groups built from finite unitary groups. We show that in this case, coadjoint-invariant measures are linked to some new branching graphs. The latter are still related to the HL functions, but the novelty is that now the formal edge multiplicities come from the multiplication by $p_2$ (not $p_1$) and the HL parameter $t$ turns out to be negative (as in Ennola's duality)." @default.
- W3211659102 created "2021-11-22" @default.
- W3211659102 creator A5006618863 @default.
- W3211659102 creator A5076729643 @default.
- W3211659102 date "2022-02-01" @default.
- W3211659102 modified "2023-09-26" @default.
- W3211659102 title "Infinite-dimensional groups over finite fields and Hall-Littlewood symmetric functions" @default.
- W3211659102 cites W1980513321 @default.
- W3211659102 cites W2008469624 @default.
- W3211659102 cites W2013423589 @default.
- W3211659102 cites W2025371642 @default.
- W3211659102 cites W2033580007 @default.
- W3211659102 cites W2063389995 @default.
- W3211659102 cites W2066163852 @default.
- W3211659102 cites W2069418939 @default.
- W3211659102 cites W2072374043 @default.
- W3211659102 cites W2122961721 @default.
- W3211659102 cites W2123656616 @default.
- W3211659102 cites W2334979462 @default.
- W3211659102 cites W2962701979 @default.
- W3211659102 cites W2963865931 @default.
- W3211659102 cites W2964126423 @default.
- W3211659102 cites W4211033058 @default.
- W3211659102 doi "https://doi.org/10.1016/j.aim.2021.108087" @default.
- W3211659102 hasPublicationYear "2022" @default.
- W3211659102 type Work @default.
- W3211659102 sameAs 3211659102 @default.
- W3211659102 citedByCount "2" @default.
- W3211659102 countsByYear W32116591022022 @default.
- W3211659102 crossrefType "journal-article" @default.
- W3211659102 hasAuthorship W3211659102A5006618863 @default.
- W3211659102 hasAuthorship W3211659102A5076729643 @default.
- W3211659102 hasBestOaLocation W32116591022 @default.
- W3211659102 hasConcept C114614502 @default.
- W3211659102 hasConcept C118615104 @default.
- W3211659102 hasConcept C128622974 @default.
- W3211659102 hasConcept C134565946 @default.
- W3211659102 hasConcept C187915474 @default.
- W3211659102 hasConcept C190470478 @default.
- W3211659102 hasConcept C202444582 @default.
- W3211659102 hasConcept C33923547 @default.
- W3211659102 hasConcept C35661339 @default.
- W3211659102 hasConcept C3746008 @default.
- W3211659102 hasConcept C37914503 @default.
- W3211659102 hasConcept C77926391 @default.
- W3211659102 hasConceptScore W3211659102C114614502 @default.
- W3211659102 hasConceptScore W3211659102C118615104 @default.
- W3211659102 hasConceptScore W3211659102C128622974 @default.
- W3211659102 hasConceptScore W3211659102C134565946 @default.
- W3211659102 hasConceptScore W3211659102C187915474 @default.
- W3211659102 hasConceptScore W3211659102C190470478 @default.
- W3211659102 hasConceptScore W3211659102C202444582 @default.
- W3211659102 hasConceptScore W3211659102C33923547 @default.
- W3211659102 hasConceptScore W3211659102C35661339 @default.
- W3211659102 hasConceptScore W3211659102C3746008 @default.
- W3211659102 hasConceptScore W3211659102C37914503 @default.
- W3211659102 hasConceptScore W3211659102C77926391 @default.
- W3211659102 hasFunder F4320309398 @default.
- W3211659102 hasFunder F4320324099 @default.
- W3211659102 hasLocation W32116591021 @default.
- W3211659102 hasLocation W32116591022 @default.
- W3211659102 hasOpenAccess W3211659102 @default.
- W3211659102 hasPrimaryLocation W32116591021 @default.
- W3211659102 hasRelatedWork W1947495769 @default.
- W3211659102 hasRelatedWork W2063132333 @default.
- W3211659102 hasRelatedWork W2078508731 @default.
- W3211659102 hasRelatedWork W2087734572 @default.
- W3211659102 hasRelatedWork W2088544526 @default.
- W3211659102 hasRelatedWork W2178766053 @default.
- W3211659102 hasRelatedWork W2941462402 @default.
- W3211659102 hasRelatedWork W3099641547 @default.
- W3211659102 hasRelatedWork W4230292203 @default.
- W3211659102 hasRelatedWork W4237497331 @default.
- W3211659102 hasVolume "395" @default.
- W3211659102 isParatext "false" @default.
- W3211659102 isRetracted "false" @default.
- W3211659102 magId "3211659102" @default.
- W3211659102 workType "article" @default.