Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211673885> ?p ?o ?g. }
- W3211673885 endingPage "269" @default.
- W3211673885 startingPage "255" @default.
- W3211673885 abstract "Daylight harvesting is a well-known strategy to address building energy efficiency. However, few simplified tools can evaluate its dual impact on lighting and air conditioning energy consumption. Artificial neural networks (ANNs) have been used as metamodels to predict energy consumption with high precision, few input parameters and instant response. However, this approach still lacks the potential to estimate consumption when there is daylight harvesting, at the ambient level, where the effect of orientation can be noted. This study investigates this potential, in order to evaluate the applicability of ANNs as a tool to aid the architectonic design. The ANNs were approached as metamodels trained based on EnergyPlus thermo-energetic simulations. The network configuration focused on determining its simplest feasible form. The input parameters adopted as the main variables of the building envelope were as follows: orientation, window-to-wall ratio and visible transmission. The effects of the encoding of orientation as a network input parameter, the number of examples of each variable for network training and changing the parameters used for the training were evaluated. The networks predicted the individualized consumption according to the end use with errors below 5%, indicating their potential to be applied as a simplified tool to support the design process, considering the elementary variables of the building envelope. The discussion of results focused on guidelines and challenges to achieve this purpose when contemplating the broadening of the metamodel scope." @default.
- W3211673885 created "2021-11-22" @default.
- W3211673885 creator A5003390877 @default.
- W3211673885 creator A5027185735 @default.
- W3211673885 creator A5066158093 @default.
- W3211673885 date "2021-11-06" @default.
- W3211673885 modified "2023-10-17" @default.
- W3211673885 title "Metamodeling of the Energy Consumption of Buildings with Daylight Harvesting – Application of Artificial Neural Networks Sensitive to Orientation" @default.
- W3211673885 cites W1988434901 @default.
- W3211673885 cites W2008804447 @default.
- W3211673885 cites W2016066881 @default.
- W3211673885 cites W2024075368 @default.
- W3211673885 cites W2033065921 @default.
- W3211673885 cites W2039843816 @default.
- W3211673885 cites W2060774500 @default.
- W3211673885 cites W2071739940 @default.
- W3211673885 cites W2083865869 @default.
- W3211673885 cites W2087060283 @default.
- W3211673885 cites W2128120029 @default.
- W3211673885 cites W2129619011 @default.
- W3211673885 cites W2134369356 @default.
- W3211673885 cites W2155550413 @default.
- W3211673885 cites W2163167422 @default.
- W3211673885 cites W2166694819 @default.
- W3211673885 cites W2172172920 @default.
- W3211673885 cites W2336405931 @default.
- W3211673885 cites W2911546748 @default.
- W3211673885 cites W2999544863 @default.
- W3211673885 cites W3008121346 @default.
- W3211673885 cites W3011463854 @default.
- W3211673885 cites W349655939 @default.
- W3211673885 doi "https://doi.org/10.15627/jd.2021.20" @default.
- W3211673885 hasPublicationYear "2021" @default.
- W3211673885 type Work @default.
- W3211673885 sameAs 3211673885 @default.
- W3211673885 citedByCount "2" @default.
- W3211673885 countsByYear W32116738852022 @default.
- W3211673885 countsByYear W32116738852023 @default.
- W3211673885 crossrefType "journal-article" @default.
- W3211673885 hasAuthorship W3211673885A5003390877 @default.
- W3211673885 hasAuthorship W3211673885A5027185735 @default.
- W3211673885 hasAuthorship W3211673885A5066158093 @default.
- W3211673885 hasBestOaLocation W32116738851 @default.
- W3211673885 hasConcept C105795698 @default.
- W3211673885 hasConcept C111919701 @default.
- W3211673885 hasConcept C119599485 @default.
- W3211673885 hasConcept C120665830 @default.
- W3211673885 hasConcept C121332964 @default.
- W3211673885 hasConcept C127413603 @default.
- W3211673885 hasConcept C13384339 @default.
- W3211673885 hasConcept C134306372 @default.
- W3211673885 hasConcept C149277555 @default.
- W3211673885 hasConcept C153294291 @default.
- W3211673885 hasConcept C154945302 @default.
- W3211673885 hasConcept C16345878 @default.
- W3211673885 hasConcept C170154142 @default.
- W3211673885 hasConcept C182365436 @default.
- W3211673885 hasConcept C186370098 @default.
- W3211673885 hasConcept C196803488 @default.
- W3211673885 hasConcept C204530211 @default.
- W3211673885 hasConcept C2524010 @default.
- W3211673885 hasConcept C2780165032 @default.
- W3211673885 hasConcept C33923547 @default.
- W3211673885 hasConcept C41008148 @default.
- W3211673885 hasConcept C44154836 @default.
- W3211673885 hasConcept C50644808 @default.
- W3211673885 hasConcept C554190296 @default.
- W3211673885 hasConcept C65155139 @default.
- W3211673885 hasConcept C76155785 @default.
- W3211673885 hasConcept C98045186 @default.
- W3211673885 hasConceptScore W3211673885C105795698 @default.
- W3211673885 hasConceptScore W3211673885C111919701 @default.
- W3211673885 hasConceptScore W3211673885C119599485 @default.
- W3211673885 hasConceptScore W3211673885C120665830 @default.
- W3211673885 hasConceptScore W3211673885C121332964 @default.
- W3211673885 hasConceptScore W3211673885C127413603 @default.
- W3211673885 hasConceptScore W3211673885C13384339 @default.
- W3211673885 hasConceptScore W3211673885C134306372 @default.
- W3211673885 hasConceptScore W3211673885C149277555 @default.
- W3211673885 hasConceptScore W3211673885C153294291 @default.
- W3211673885 hasConceptScore W3211673885C154945302 @default.
- W3211673885 hasConceptScore W3211673885C16345878 @default.
- W3211673885 hasConceptScore W3211673885C170154142 @default.
- W3211673885 hasConceptScore W3211673885C182365436 @default.
- W3211673885 hasConceptScore W3211673885C186370098 @default.
- W3211673885 hasConceptScore W3211673885C196803488 @default.
- W3211673885 hasConceptScore W3211673885C204530211 @default.
- W3211673885 hasConceptScore W3211673885C2524010 @default.
- W3211673885 hasConceptScore W3211673885C2780165032 @default.
- W3211673885 hasConceptScore W3211673885C33923547 @default.
- W3211673885 hasConceptScore W3211673885C41008148 @default.
- W3211673885 hasConceptScore W3211673885C44154836 @default.
- W3211673885 hasConceptScore W3211673885C50644808 @default.
- W3211673885 hasConceptScore W3211673885C554190296 @default.
- W3211673885 hasConceptScore W3211673885C65155139 @default.
- W3211673885 hasConceptScore W3211673885C76155785 @default.
- W3211673885 hasConceptScore W3211673885C98045186 @default.
- W3211673885 hasIssue "2" @default.