Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211700219> ?p ?o ?g. }
- W3211700219 endingPage "103385" @default.
- W3211700219 startingPage "103385" @default.
- W3211700219 abstract "• MultiTempGAN is a low-complexity GAN network developed for multitemporal image compression. • It aims to transform the reference MS image into the target MS image using generative models. • It presents high performances in terms of quality metrics, visual comparison, and applications. Multispectral satellites that measure the reflected energy from the different regions on the Earth generate the multispectral (MS) images continuously. The following MS image for the same region can be acquired with respect to the satellite revisit period. The images captured at different times over the same region are called multitemporal images. Traditional compression methods generally benefit from spectral and spatial correlation within the MS image. However, there is also a temporal correlation between multitemporal images. To this end, we propose a novel generative adversarial network (GAN) based prediction method called MultiTempGAN for compression of multitemporal MS images. The proposed method defines a lightweight GAN-based model that learns to transform the reference image to the target image. Here, the generator parameters of MultiTempGAN are saved for the reconstruction purpose in the receiver system. Due to MultiTempGAN has a low number of parameters, it provides efficiency in multitemporal MS image compression. Experiments were carried out on three Sentinel-2 MS image pairs belonging to different geographical regions. We compared the proposed method with JPEG2000-based conventional compression methods and three deep learning methods in terms of signal-to-noise ratio, mean spectral angle, mean spectral correlation, and laplacian mean square error metrics. Additionally, we have also evaluated the change detection performances and visual maps of the methods. Experimental results demonstrate that MultiTempGAN not only achieves the best metric values among the other methods at high compression ratios but also presents convincing performances in change detection applications." @default.
- W3211700219 created "2021-11-22" @default.
- W3211700219 creator A5007879522 @default.
- W3211700219 creator A5088367907 @default.
- W3211700219 creator A5090504203 @default.
- W3211700219 date "2021-11-01" @default.
- W3211700219 modified "2023-10-01" @default.
- W3211700219 title "MultiTempGAN: Multitemporal multispectral image compression framework using generative adversarial networks" @default.
- W3211700219 cites W1901129140 @default.
- W3211700219 cites W2012442533 @default.
- W3211700219 cites W2017014096 @default.
- W3211700219 cites W2052987328 @default.
- W3211700219 cites W2142458747 @default.
- W3211700219 cites W2147639570 @default.
- W3211700219 cites W2158093696 @default.
- W3211700219 cites W2158548804 @default.
- W3211700219 cites W2312468355 @default.
- W3211700219 cites W2462046202 @default.
- W3211700219 cites W2471108112 @default.
- W3211700219 cites W2540458203 @default.
- W3211700219 cites W2565499339 @default.
- W3211700219 cites W2801747952 @default.
- W3211700219 cites W2804188723 @default.
- W3211700219 cites W2805898668 @default.
- W3211700219 cites W2807355972 @default.
- W3211700219 cites W2858451338 @default.
- W3211700219 cites W2883863016 @default.
- W3211700219 cites W2931697294 @default.
- W3211700219 cites W2940954733 @default.
- W3211700219 cites W2953650058 @default.
- W3211700219 cites W2963149687 @default.
- W3211700219 cites W2963767194 @default.
- W3211700219 cites W2982718246 @default.
- W3211700219 cites W3008746994 @default.
- W3211700219 cites W3035629584 @default.
- W3211700219 cites W3042093094 @default.
- W3211700219 cites W3100975431 @default.
- W3211700219 cites W3101913580 @default.
- W3211700219 cites W3102189958 @default.
- W3211700219 cites W3106823864 @default.
- W3211700219 cites W3110907176 @default.
- W3211700219 cites W3114364469 @default.
- W3211700219 cites W2902357508 @default.
- W3211700219 doi "https://doi.org/10.1016/j.jvcir.2021.103385" @default.
- W3211700219 hasPublicationYear "2021" @default.
- W3211700219 type Work @default.
- W3211700219 sameAs 3211700219 @default.
- W3211700219 citedByCount "2" @default.
- W3211700219 countsByYear W32117002192022 @default.
- W3211700219 crossrefType "journal-article" @default.
- W3211700219 hasAuthorship W3211700219A5007879522 @default.
- W3211700219 hasAuthorship W3211700219A5088367907 @default.
- W3211700219 hasAuthorship W3211700219A5090504203 @default.
- W3211700219 hasConcept C105795698 @default.
- W3211700219 hasConcept C115961682 @default.
- W3211700219 hasConcept C127313418 @default.
- W3211700219 hasConcept C13481523 @default.
- W3211700219 hasConcept C139945424 @default.
- W3211700219 hasConcept C153180895 @default.
- W3211700219 hasConcept C154945302 @default.
- W3211700219 hasConcept C173163844 @default.
- W3211700219 hasConcept C31972630 @default.
- W3211700219 hasConcept C33923547 @default.
- W3211700219 hasConcept C41008148 @default.
- W3211700219 hasConcept C62649853 @default.
- W3211700219 hasConcept C78548338 @default.
- W3211700219 hasConcept C9417928 @default.
- W3211700219 hasConceptScore W3211700219C105795698 @default.
- W3211700219 hasConceptScore W3211700219C115961682 @default.
- W3211700219 hasConceptScore W3211700219C127313418 @default.
- W3211700219 hasConceptScore W3211700219C13481523 @default.
- W3211700219 hasConceptScore W3211700219C139945424 @default.
- W3211700219 hasConceptScore W3211700219C153180895 @default.
- W3211700219 hasConceptScore W3211700219C154945302 @default.
- W3211700219 hasConceptScore W3211700219C173163844 @default.
- W3211700219 hasConceptScore W3211700219C31972630 @default.
- W3211700219 hasConceptScore W3211700219C33923547 @default.
- W3211700219 hasConceptScore W3211700219C41008148 @default.
- W3211700219 hasConceptScore W3211700219C62649853 @default.
- W3211700219 hasConceptScore W3211700219C78548338 @default.
- W3211700219 hasConceptScore W3211700219C9417928 @default.
- W3211700219 hasLocation W32117002191 @default.
- W3211700219 hasOpenAccess W3211700219 @default.
- W3211700219 hasPrimaryLocation W32117002191 @default.
- W3211700219 hasRelatedWork W1497317973 @default.
- W3211700219 hasRelatedWork W1966028303 @default.
- W3211700219 hasRelatedWork W2005185696 @default.
- W3211700219 hasRelatedWork W2030578664 @default.
- W3211700219 hasRelatedWork W2080322084 @default.
- W3211700219 hasRelatedWork W2130625859 @default.
- W3211700219 hasRelatedWork W2474967816 @default.
- W3211700219 hasRelatedWork W2544717973 @default.
- W3211700219 hasRelatedWork W2956043259 @default.
- W3211700219 hasRelatedWork W2961060159 @default.
- W3211700219 hasVolume "81" @default.
- W3211700219 isParatext "false" @default.
- W3211700219 isRetracted "false" @default.
- W3211700219 magId "3211700219" @default.