Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211700994> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3211700994 abstract "Breast tumor segmentation is a preliminary step for breast tumor diagnosis. It is expensive to obtain pixel-level labels for breast tumor segmentation. We aim to perform breast tumor segmentation in breast ultrasound (BUS) images with image-level labels. To this end, we propose a class activation mapping with level set (CAM-LS) method. Given a training dataset consisting of BUS images with or without breast tumors which naturally contain image-level labels, a classification network is trained for breast tumor recognition. Class activation maps (CAMs) are generated for positive predictions, which highlight discriminative regions of breast tumors. Anatomical constraints are used to reduce the search space for breast tumors. For breast tumor recognition, the proposed method achieves sensitivity of 92.0%, precision of 92.8%, specificity of 95.2%, accuracy of 93.9% and F1-score of 0.924. For breast tumor segmentation, the proposed method obtains Dice similarity coefficient (DSC) of 73.5 ± 18.0% and interaction-over-union (IoU) of 60.8 ± 19.7%. The proposed CAM-LS method performs automated breast tumor segmentation with image-level labels only and is demonstrated in the experiments to have good generalization on different ultrasound platforms." @default.
- W3211700994 created "2021-11-22" @default.
- W3211700994 creator A5046214153 @default.
- W3211700994 creator A5063493692 @default.
- W3211700994 creator A5083029223 @default.
- W3211700994 creator A5084231233 @default.
- W3211700994 date "2021-09-11" @default.
- W3211700994 modified "2023-09-24" @default.
- W3211700994 title "Weakly-supervised deep learning for breast tumor segmentation in ultrasound images" @default.
- W3211700994 cites W2116040950 @default.
- W3211700994 cites W2295107390 @default.
- W3211700994 cites W2531409750 @default.
- W3211700994 cites W2798376494 @default.
- W3211700994 cites W2913559493 @default.
- W3211700994 cites W2963104294 @default.
- W3211700994 cites W2995454717 @default.
- W3211700994 cites W3091852692 @default.
- W3211700994 doi "https://doi.org/10.1109/ius52206.2021.9593692" @default.
- W3211700994 hasPublicationYear "2021" @default.
- W3211700994 type Work @default.
- W3211700994 sameAs 3211700994 @default.
- W3211700994 citedByCount "0" @default.
- W3211700994 crossrefType "proceedings-article" @default.
- W3211700994 hasAuthorship W3211700994A5046214153 @default.
- W3211700994 hasAuthorship W3211700994A5063493692 @default.
- W3211700994 hasAuthorship W3211700994A5083029223 @default.
- W3211700994 hasAuthorship W3211700994A5084231233 @default.
- W3211700994 hasConcept C121608353 @default.
- W3211700994 hasConcept C124504099 @default.
- W3211700994 hasConcept C126322002 @default.
- W3211700994 hasConcept C153180895 @default.
- W3211700994 hasConcept C154945302 @default.
- W3211700994 hasConcept C160633673 @default.
- W3211700994 hasConcept C2777423100 @default.
- W3211700994 hasConcept C2780472235 @default.
- W3211700994 hasConcept C2986637895 @default.
- W3211700994 hasConcept C31972630 @default.
- W3211700994 hasConcept C41008148 @default.
- W3211700994 hasConcept C530470458 @default.
- W3211700994 hasConcept C71924100 @default.
- W3211700994 hasConcept C89600930 @default.
- W3211700994 hasConcept C97931131 @default.
- W3211700994 hasConceptScore W3211700994C121608353 @default.
- W3211700994 hasConceptScore W3211700994C124504099 @default.
- W3211700994 hasConceptScore W3211700994C126322002 @default.
- W3211700994 hasConceptScore W3211700994C153180895 @default.
- W3211700994 hasConceptScore W3211700994C154945302 @default.
- W3211700994 hasConceptScore W3211700994C160633673 @default.
- W3211700994 hasConceptScore W3211700994C2777423100 @default.
- W3211700994 hasConceptScore W3211700994C2780472235 @default.
- W3211700994 hasConceptScore W3211700994C2986637895 @default.
- W3211700994 hasConceptScore W3211700994C31972630 @default.
- W3211700994 hasConceptScore W3211700994C41008148 @default.
- W3211700994 hasConceptScore W3211700994C530470458 @default.
- W3211700994 hasConceptScore W3211700994C71924100 @default.
- W3211700994 hasConceptScore W3211700994C89600930 @default.
- W3211700994 hasConceptScore W3211700994C97931131 @default.
- W3211700994 hasFunder F4320321001 @default.
- W3211700994 hasLocation W32117009941 @default.
- W3211700994 hasOpenAccess W3211700994 @default.
- W3211700994 hasPrimaryLocation W32117009941 @default.
- W3211700994 hasRelatedWork W10029978 @default.
- W3211700994 hasRelatedWork W10828093 @default.
- W3211700994 hasRelatedWork W11130107 @default.
- W3211700994 hasRelatedWork W11321453 @default.
- W3211700994 hasRelatedWork W12703013 @default.
- W3211700994 hasRelatedWork W1341358 @default.
- W3211700994 hasRelatedWork W2758677 @default.
- W3211700994 hasRelatedWork W3542719 @default.
- W3211700994 hasRelatedWork W4706920 @default.
- W3211700994 hasRelatedWork W3000238 @default.
- W3211700994 isParatext "false" @default.
- W3211700994 isRetracted "false" @default.
- W3211700994 magId "3211700994" @default.
- W3211700994 workType "article" @default.