Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211702995> ?p ?o ?g. }
- W3211702995 endingPage "751" @default.
- W3211702995 startingPage "719" @default.
- W3211702995 abstract "Developing efficient strategies for searching larger Bayesian networks in exact structure learning is an open challenge. In this study, ancestral and heuristic partition constraints are proposed to develop a series of exact learning algorithms, in which an ancestral partition is used to prune the order graph of a Bayesian network, and a heuristic partition is utilized to improve the tightness of the heuristic function. Algorithms for calculating these two types of constraints are established through thorough theoretical proof. Comparative experiments have been undertaken with state-of-the-art algorithms. It has been demonstrated that an algorithm improved with the proposed ancestral partition or combined ancestral and heuristic partition outperforms the algorithm in its original form, and it can have lower running time, fewer expanded states, and higher accuracy, as well as the ability to search larger networks within 100 nodes." @default.
- W3211702995 created "2021-11-22" @default.
- W3211702995 creator A5005364117 @default.
- W3211702995 creator A5048831651 @default.
- W3211702995 creator A5071086616 @default.
- W3211702995 creator A5078121940 @default.
- W3211702995 creator A5088229898 @default.
- W3211702995 creator A5091370407 @default.
- W3211702995 date "2022-01-01" @default.
- W3211702995 modified "2023-10-09" @default.
- W3211702995 title "Learning the structure of Bayesian networks with ancestral and/or heuristic partition" @default.
- W3211702995 cites W1517993545 @default.
- W3211702995 cites W1970687027 @default.
- W3211702995 cites W1972702299 @default.
- W3211702995 cites W1975062332 @default.
- W3211702995 cites W1981696983 @default.
- W3211702995 cites W2031779765 @default.
- W3211702995 cites W2054658115 @default.
- W3211702995 cites W2118196167 @default.
- W3211702995 cites W2142635246 @default.
- W3211702995 cites W2165190832 @default.
- W3211702995 cites W2168175751 @default.
- W3211702995 cites W2277112320 @default.
- W3211702995 cites W2480326552 @default.
- W3211702995 cites W2579902536 @default.
- W3211702995 cites W2592745513 @default.
- W3211702995 cites W2778189858 @default.
- W3211702995 cites W2806482331 @default.
- W3211702995 cites W2884001105 @default.
- W3211702995 cites W2912826796 @default.
- W3211702995 cites W2947197489 @default.
- W3211702995 cites W2984686125 @default.
- W3211702995 cites W3004922196 @default.
- W3211702995 cites W3015121100 @default.
- W3211702995 cites W3094846477 @default.
- W3211702995 cites W3112713339 @default.
- W3211702995 cites W3189424026 @default.
- W3211702995 cites W4236354166 @default.
- W3211702995 cites W3097823723 @default.
- W3211702995 doi "https://doi.org/10.1016/j.ins.2021.10.052" @default.
- W3211702995 hasPublicationYear "2022" @default.
- W3211702995 type Work @default.
- W3211702995 sameAs 3211702995 @default.
- W3211702995 citedByCount "8" @default.
- W3211702995 countsByYear W32117029952023 @default.
- W3211702995 crossrefType "journal-article" @default.
- W3211702995 hasAuthorship W3211702995A5005364117 @default.
- W3211702995 hasAuthorship W3211702995A5048831651 @default.
- W3211702995 hasAuthorship W3211702995A5071086616 @default.
- W3211702995 hasAuthorship W3211702995A5078121940 @default.
- W3211702995 hasAuthorship W3211702995A5088229898 @default.
- W3211702995 hasAuthorship W3211702995A5091370407 @default.
- W3211702995 hasConcept C107673813 @default.
- W3211702995 hasConcept C11413529 @default.
- W3211702995 hasConcept C114614502 @default.
- W3211702995 hasConcept C119857082 @default.
- W3211702995 hasConcept C132525143 @default.
- W3211702995 hasConcept C154945302 @default.
- W3211702995 hasConcept C173801870 @default.
- W3211702995 hasConcept C33724603 @default.
- W3211702995 hasConcept C33923547 @default.
- W3211702995 hasConcept C35995877 @default.
- W3211702995 hasConcept C41008148 @default.
- W3211702995 hasConcept C42812 @default.
- W3211702995 hasConcept C48903430 @default.
- W3211702995 hasConcept C80444323 @default.
- W3211702995 hasConceptScore W3211702995C107673813 @default.
- W3211702995 hasConceptScore W3211702995C11413529 @default.
- W3211702995 hasConceptScore W3211702995C114614502 @default.
- W3211702995 hasConceptScore W3211702995C119857082 @default.
- W3211702995 hasConceptScore W3211702995C132525143 @default.
- W3211702995 hasConceptScore W3211702995C154945302 @default.
- W3211702995 hasConceptScore W3211702995C173801870 @default.
- W3211702995 hasConceptScore W3211702995C33724603 @default.
- W3211702995 hasConceptScore W3211702995C33923547 @default.
- W3211702995 hasConceptScore W3211702995C35995877 @default.
- W3211702995 hasConceptScore W3211702995C41008148 @default.
- W3211702995 hasConceptScore W3211702995C42812 @default.
- W3211702995 hasConceptScore W3211702995C48903430 @default.
- W3211702995 hasConceptScore W3211702995C80444323 @default.
- W3211702995 hasFunder F4320321001 @default.
- W3211702995 hasLocation W32117029951 @default.
- W3211702995 hasOpenAccess W3211702995 @default.
- W3211702995 hasPrimaryLocation W32117029951 @default.
- W3211702995 hasRelatedWork W1582679534 @default.
- W3211702995 hasRelatedWork W2049190082 @default.
- W3211702995 hasRelatedWork W2217354024 @default.
- W3211702995 hasRelatedWork W2356523329 @default.
- W3211702995 hasRelatedWork W2368430003 @default.
- W3211702995 hasRelatedWork W3154094704 @default.
- W3211702995 hasRelatedWork W3211702995 @default.
- W3211702995 hasRelatedWork W4225307033 @default.
- W3211702995 hasRelatedWork W4229371135 @default.
- W3211702995 hasRelatedWork W4239075140 @default.
- W3211702995 hasVolume "584" @default.
- W3211702995 isParatext "false" @default.
- W3211702995 isRetracted "false" @default.
- W3211702995 magId "3211702995" @default.