Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211723343> ?p ?o ?g. }
- W3211723343 endingPage "108130" @default.
- W3211723343 startingPage "108130" @default.
- W3211723343 abstract "Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are enforced to incorporate physics constraints to a deep neural network in this work. One is to obtain extended features through physics-informed feature engineering, and the other is to incorporate physics-informed loss function into deep neural network as constraints. Conventional machine learning models, deep neural network and physics-informed neural network are applied to predict creep-fatigue life of 316 stainless steel. Results show that physics-informed neural network presents better prediction accuracy than deep neural network and conventional machine learning models." @default.
- W3211723343 created "2021-11-22" @default.
- W3211723343 creator A5018627197 @default.
- W3211723343 creator A5024222812 @default.
- W3211723343 creator A5029659774 @default.
- W3211723343 date "2021-12-01" @default.
- W3211723343 modified "2023-10-05" @default.
- W3211723343 title "A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures" @default.
- W3211723343 cites W1673733535 @default.
- W3211723343 cites W1908547343 @default.
- W3211723343 cites W1988079673 @default.
- W3211723343 cites W2010074247 @default.
- W3211723343 cites W2012928072 @default.
- W3211723343 cites W2018146265 @default.
- W3211723343 cites W2021848215 @default.
- W3211723343 cites W2035274307 @default.
- W3211723343 cites W2035340419 @default.
- W3211723343 cites W2035935819 @default.
- W3211723343 cites W2045223001 @default.
- W3211723343 cites W2054951200 @default.
- W3211723343 cites W2066790033 @default.
- W3211723343 cites W2076634207 @default.
- W3211723343 cites W2080740155 @default.
- W3211723343 cites W2080831321 @default.
- W3211723343 cites W2090039681 @default.
- W3211723343 cites W2112484697 @default.
- W3211723343 cites W2145992718 @default.
- W3211723343 cites W2153635508 @default.
- W3211723343 cites W2294613319 @default.
- W3211723343 cites W2902390267 @default.
- W3211723343 cites W2911964244 @default.
- W3211723343 cites W2945831274 @default.
- W3211723343 cites W2966666605 @default.
- W3211723343 cites W2983261238 @default.
- W3211723343 cites W3006023504 @default.
- W3211723343 cites W3015248553 @default.
- W3211723343 cites W3091450623 @default.
- W3211723343 cites W3097202692 @default.
- W3211723343 cites W3104764685 @default.
- W3211723343 cites W3110977315 @default.
- W3211723343 cites W3114692006 @default.
- W3211723343 cites W3118912958 @default.
- W3211723343 cites W3130565475 @default.
- W3211723343 cites W3136443578 @default.
- W3211723343 cites W3161759570 @default.
- W3211723343 cites W3163993681 @default.
- W3211723343 cites W347412992 @default.
- W3211723343 cites W4239510810 @default.
- W3211723343 doi "https://doi.org/10.1016/j.engfracmech.2021.108130" @default.
- W3211723343 hasPublicationYear "2021" @default.
- W3211723343 type Work @default.
- W3211723343 sameAs 3211723343 @default.
- W3211723343 citedByCount "42" @default.
- W3211723343 countsByYear W32117233432022 @default.
- W3211723343 countsByYear W32117233432023 @default.
- W3211723343 crossrefType "journal-article" @default.
- W3211723343 hasAuthorship W3211723343A5018627197 @default.
- W3211723343 hasAuthorship W3211723343A5024222812 @default.
- W3211723343 hasAuthorship W3211723343A5029659774 @default.
- W3211723343 hasConcept C108583219 @default.
- W3211723343 hasConcept C119857082 @default.
- W3211723343 hasConcept C121332964 @default.
- W3211723343 hasConcept C134306372 @default.
- W3211723343 hasConcept C138885662 @default.
- W3211723343 hasConcept C154945302 @default.
- W3211723343 hasConcept C177148314 @default.
- W3211723343 hasConcept C2776401178 @default.
- W3211723343 hasConcept C33923547 @default.
- W3211723343 hasConcept C41008148 @default.
- W3211723343 hasConcept C41895202 @default.
- W3211723343 hasConcept C49357902 @default.
- W3211723343 hasConcept C50644808 @default.
- W3211723343 hasConcept C97355855 @default.
- W3211723343 hasConceptScore W3211723343C108583219 @default.
- W3211723343 hasConceptScore W3211723343C119857082 @default.
- W3211723343 hasConceptScore W3211723343C121332964 @default.
- W3211723343 hasConceptScore W3211723343C134306372 @default.
- W3211723343 hasConceptScore W3211723343C138885662 @default.
- W3211723343 hasConceptScore W3211723343C154945302 @default.
- W3211723343 hasConceptScore W3211723343C177148314 @default.
- W3211723343 hasConceptScore W3211723343C2776401178 @default.
- W3211723343 hasConceptScore W3211723343C33923547 @default.
- W3211723343 hasConceptScore W3211723343C41008148 @default.
- W3211723343 hasConceptScore W3211723343C41895202 @default.
- W3211723343 hasConceptScore W3211723343C49357902 @default.
- W3211723343 hasConceptScore W3211723343C50644808 @default.
- W3211723343 hasConceptScore W3211723343C97355855 @default.
- W3211723343 hasFunder F4320321001 @default.
- W3211723343 hasLocation W32117233431 @default.
- W3211723343 hasOpenAccess W3211723343 @default.
- W3211723343 hasPrimaryLocation W32117233431 @default.
- W3211723343 hasRelatedWork W3014300295 @default.
- W3211723343 hasRelatedWork W3164822677 @default.
- W3211723343 hasRelatedWork W4223943233 @default.
- W3211723343 hasRelatedWork W4225161397 @default.
- W3211723343 hasRelatedWork W4250304930 @default.
- W3211723343 hasRelatedWork W4312200629 @default.
- W3211723343 hasRelatedWork W4360585206 @default.