Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211749811> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3211749811 abstract "The past decade has seen a notable increase in air pollution that directly damages health, animals, and plants worldwide. To mitigate such negative effects, several research groups have been working on predicting air quality using deep learning. However, the lack of high-quality air quality datasets is a major obstacle encountered to achieve high accuracy prediction. In this paper, we introduce an air monitoring data generator powered by learning distributed real sequences using the generative adversarial network (GAN), namely AirGen. An unsupervised adversarial loss is also employed in the network to minimize the difference between generated synthetic and original data in the training process. Experiments on real datasets indicate that the data generated by Airgen could significantly increase the prediction accuracy performed by deep learning models. The mean square error (MSE) is remarkably reduced from 0.024 to 0.015." @default.
- W3211749811 created "2021-11-22" @default.
- W3211749811 creator A5054825610 @default.
- W3211749811 creator A5081145682 @default.
- W3211749811 date "2021-09-06" @default.
- W3211749811 modified "2023-09-26" @default.
- W3211749811 title "AirGen: GAN-based synthetic data generator for air monitoring in Smart City" @default.
- W3211749811 cites W1710476689 @default.
- W3211749811 cites W1995833791 @default.
- W3211749811 cites W2008924408 @default.
- W3211749811 cites W2040519706 @default.
- W3211749811 cites W2102148524 @default.
- W3211749811 cites W2187089797 @default.
- W3211749811 cites W2753687772 @default.
- W3211749811 cites W2754940949 @default.
- W3211749811 cites W2761738035 @default.
- W3211749811 cites W2921914364 @default.
- W3211749811 cites W2949382160 @default.
- W3211749811 cites W2952757700 @default.
- W3211749811 cites W2970360512 @default.
- W3211749811 cites W2980669002 @default.
- W3211749811 cites W2987339895 @default.
- W3211749811 cites W3103346379 @default.
- W3211749811 cites W3117573952 @default.
- W3211749811 cites W3128109808 @default.
- W3211749811 doi "https://doi.org/10.1109/rtsi50628.2021.9597364" @default.
- W3211749811 hasPublicationYear "2021" @default.
- W3211749811 type Work @default.
- W3211749811 sameAs 3211749811 @default.
- W3211749811 citedByCount "2" @default.
- W3211749811 countsByYear W32117498112023 @default.
- W3211749811 crossrefType "proceedings-article" @default.
- W3211749811 hasAuthorship W3211749811A5054825610 @default.
- W3211749811 hasAuthorship W3211749811A5081145682 @default.
- W3211749811 hasConcept C105795698 @default.
- W3211749811 hasConcept C108583219 @default.
- W3211749811 hasConcept C111919701 @default.
- W3211749811 hasConcept C119857082 @default.
- W3211749811 hasConcept C121332964 @default.
- W3211749811 hasConcept C124101348 @default.
- W3211749811 hasConcept C126314574 @default.
- W3211749811 hasConcept C139945424 @default.
- W3211749811 hasConcept C153294291 @default.
- W3211749811 hasConcept C154945302 @default.
- W3211749811 hasConcept C163258240 @default.
- W3211749811 hasConcept C2780992000 @default.
- W3211749811 hasConcept C2988773926 @default.
- W3211749811 hasConcept C33923547 @default.
- W3211749811 hasConcept C37736160 @default.
- W3211749811 hasConcept C39890363 @default.
- W3211749811 hasConcept C41008148 @default.
- W3211749811 hasConcept C62520636 @default.
- W3211749811 hasConcept C67186912 @default.
- W3211749811 hasConcept C77088390 @default.
- W3211749811 hasConcept C98045186 @default.
- W3211749811 hasConceptScore W3211749811C105795698 @default.
- W3211749811 hasConceptScore W3211749811C108583219 @default.
- W3211749811 hasConceptScore W3211749811C111919701 @default.
- W3211749811 hasConceptScore W3211749811C119857082 @default.
- W3211749811 hasConceptScore W3211749811C121332964 @default.
- W3211749811 hasConceptScore W3211749811C124101348 @default.
- W3211749811 hasConceptScore W3211749811C126314574 @default.
- W3211749811 hasConceptScore W3211749811C139945424 @default.
- W3211749811 hasConceptScore W3211749811C153294291 @default.
- W3211749811 hasConceptScore W3211749811C154945302 @default.
- W3211749811 hasConceptScore W3211749811C163258240 @default.
- W3211749811 hasConceptScore W3211749811C2780992000 @default.
- W3211749811 hasConceptScore W3211749811C2988773926 @default.
- W3211749811 hasConceptScore W3211749811C33923547 @default.
- W3211749811 hasConceptScore W3211749811C37736160 @default.
- W3211749811 hasConceptScore W3211749811C39890363 @default.
- W3211749811 hasConceptScore W3211749811C41008148 @default.
- W3211749811 hasConceptScore W3211749811C62520636 @default.
- W3211749811 hasConceptScore W3211749811C67186912 @default.
- W3211749811 hasConceptScore W3211749811C77088390 @default.
- W3211749811 hasConceptScore W3211749811C98045186 @default.
- W3211749811 hasLocation W32117498111 @default.
- W3211749811 hasOpenAccess W3211749811 @default.
- W3211749811 hasPrimaryLocation W32117498111 @default.
- W3211749811 hasRelatedWork W10015831 @default.
- W3211749811 hasRelatedWork W10166270 @default.
- W3211749811 hasRelatedWork W12291563 @default.
- W3211749811 hasRelatedWork W12803709 @default.
- W3211749811 hasRelatedWork W1807198 @default.
- W3211749811 hasRelatedWork W4630997 @default.
- W3211749811 hasRelatedWork W5470710 @default.
- W3211749811 hasRelatedWork W6172808 @default.
- W3211749811 hasRelatedWork W8021486 @default.
- W3211749811 hasRelatedWork W9190101 @default.
- W3211749811 isParatext "false" @default.
- W3211749811 isRetracted "false" @default.
- W3211749811 magId "3211749811" @default.
- W3211749811 workType "article" @default.