Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211756810> ?p ?o ?g. }
- W3211756810 endingPage "e2135271" @default.
- W3211756810 startingPage "e2135271" @default.
- W3211756810 abstract "<h3>Importance</h3> Colorectal polyps are common, and their histopathologic classification is used in the planning of follow-up surveillance. Substantial variation has been observed in pathologists’ classification of colorectal polyps, and improved assessment by pathologists may be associated with reduced subsequent underuse and overuse of colonoscopy. <h3>Objective</h3> To compare standard microscopic assessment with an artificial intelligence (AI)–augmented digital system that annotates regions of interest within digitized polyp tissue and predicts polyp type using a deep learning model to assist pathologists in colorectal polyp classification. <h3>Design, Setting, and Participants</h3> In this diagnostic study conducted at a tertiary academic medical center and a community hospital in New Hampshire, 100 slides with colorectal polyp samples were read by 15 pathologists using a microscope and an AI-augmented digital system, with a washout period of at least 12 weeks between use of each modality. The study was conducted from February 10 to July 10, 2020. <h3>Main Outcomes and Measures</h3> Accuracy and time of evaluation were used to compare pathologists’ performance when a microscope was used with their performance when the AI-augmented digital system was used. Outcomes were compared using paired<i>t</i>tests and mixed-effects models. <h3>Results</h3> In assessments of 100 slides with colorectal polyp specimens, use of the AI-augmented digital system significantly improved pathologists' classification accuracy compared with microscopic assessment from 73.9% (95% CI, 71.7%-76.2%) to 80.8% (95% CI, 78.8%-82.8%) (<i>P</i> < .001). The overall difference in the evaluation time per slide between the digital system (mean, 21.7 seconds; 95% CI, 20.8-22.7 seconds) and microscopic examination (mean, 13.0 seconds; 95% CI, 12.4-13.5 seconds) was –8.8 seconds (95% CI, –9.8 to –7.7 seconds), but this difference decreased as pathologists became more familiar and experienced with the digital system; the difference between the time of evaluation on the last set of 20 slides for all pathologists when using the microscope and the digital system was 4.8 seconds (95% CI, 3.0-6.5 seconds). <h3>Conclusions and Relevance</h3> In this diagnostic study, an AI-augmented digital system significantly improved the accuracy of pathologic interpretation of colorectal polyps compared with microscopic assessment. If applied broadly to clinical practice, this tool may be associated with decreases in subsequent overuse and underuse of colonoscopy and thus with improved patient outcomes and reduced health care costs." @default.
- W3211756810 created "2021-11-22" @default.
- W3211756810 creator A5001118529 @default.
- W3211756810 creator A5028691600 @default.
- W3211756810 creator A5048145081 @default.
- W3211756810 creator A5048190601 @default.
- W3211756810 creator A5051476268 @default.
- W3211756810 creator A5071722555 @default.
- W3211756810 creator A5072074353 @default.
- W3211756810 creator A5073855965 @default.
- W3211756810 creator A5074781691 @default.
- W3211756810 creator A5075078610 @default.
- W3211756810 creator A5078446912 @default.
- W3211756810 date "2021-11-18" @default.
- W3211756810 modified "2023-10-16" @default.
- W3211756810 title "Evaluation of an Artificial Intelligence–Augmented Digital System for Histologic Classification of Colorectal Polyps" @default.
- W3211756810 cites W1694657740 @default.
- W3211756810 cites W1697356288 @default.
- W3211756810 cites W1972537482 @default.
- W3211756810 cites W1986685330 @default.
- W3211756810 cites W2016275170 @default.
- W3211756810 cites W2044196742 @default.
- W3211756810 cites W2062663868 @default.
- W3211756810 cites W2081811286 @default.
- W3211756810 cites W2119750820 @default.
- W3211756810 cites W2136447701 @default.
- W3211756810 cites W2152014352 @default.
- W3211756810 cites W2154433879 @default.
- W3211756810 cites W2594760301 @default.
- W3211756810 cites W2760946358 @default.
- W3211756810 cites W2897434820 @default.
- W3211756810 cites W2945807221 @default.
- W3211756810 cites W2956228567 @default.
- W3211756810 cites W2964345665 @default.
- W3211756810 cites W2978209846 @default.
- W3211756810 cites W3005263232 @default.
- W3211756810 cites W3007464329 @default.
- W3211756810 cites W3019938913 @default.
- W3211756810 cites W3087688677 @default.
- W3211756810 cites W3105070630 @default.
- W3211756810 cites W3142933006 @default.
- W3211756810 cites W4237964946 @default.
- W3211756810 cites W4244339390 @default.
- W3211756810 cites W4251051581 @default.
- W3211756810 cites W4294536021 @default.
- W3211756810 doi "https://doi.org/10.1001/jamanetworkopen.2021.35271" @default.
- W3211756810 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8603082" @default.
- W3211756810 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34792588" @default.
- W3211756810 hasPublicationYear "2021" @default.
- W3211756810 type Work @default.
- W3211756810 sameAs 3211756810 @default.
- W3211756810 citedByCount "12" @default.
- W3211756810 countsByYear W32117568102022 @default.
- W3211756810 countsByYear W32117568102023 @default.
- W3211756810 crossrefType "journal-article" @default.
- W3211756810 hasAuthorship W3211756810A5001118529 @default.
- W3211756810 hasAuthorship W3211756810A5028691600 @default.
- W3211756810 hasAuthorship W3211756810A5048145081 @default.
- W3211756810 hasAuthorship W3211756810A5048190601 @default.
- W3211756810 hasAuthorship W3211756810A5051476268 @default.
- W3211756810 hasAuthorship W3211756810A5071722555 @default.
- W3211756810 hasAuthorship W3211756810A5072074353 @default.
- W3211756810 hasAuthorship W3211756810A5073855965 @default.
- W3211756810 hasAuthorship W3211756810A5074781691 @default.
- W3211756810 hasAuthorship W3211756810A5075078610 @default.
- W3211756810 hasAuthorship W3211756810A5078446912 @default.
- W3211756810 hasBestOaLocation W32117568101 @default.
- W3211756810 hasConcept C121608353 @default.
- W3211756810 hasConcept C126322002 @default.
- W3211756810 hasConcept C126838900 @default.
- W3211756810 hasConcept C142724271 @default.
- W3211756810 hasConcept C154945302 @default.
- W3211756810 hasConcept C19527891 @default.
- W3211756810 hasConcept C2778435480 @default.
- W3211756810 hasConcept C2780226545 @default.
- W3211756810 hasConcept C2910564736 @default.
- W3211756810 hasConcept C41008148 @default.
- W3211756810 hasConcept C526805850 @default.
- W3211756810 hasConcept C71924100 @default.
- W3211756810 hasConceptScore W3211756810C121608353 @default.
- W3211756810 hasConceptScore W3211756810C126322002 @default.
- W3211756810 hasConceptScore W3211756810C126838900 @default.
- W3211756810 hasConceptScore W3211756810C142724271 @default.
- W3211756810 hasConceptScore W3211756810C154945302 @default.
- W3211756810 hasConceptScore W3211756810C19527891 @default.
- W3211756810 hasConceptScore W3211756810C2778435480 @default.
- W3211756810 hasConceptScore W3211756810C2780226545 @default.
- W3211756810 hasConceptScore W3211756810C2910564736 @default.
- W3211756810 hasConceptScore W3211756810C41008148 @default.
- W3211756810 hasConceptScore W3211756810C526805850 @default.
- W3211756810 hasConceptScore W3211756810C71924100 @default.
- W3211756810 hasIssue "11" @default.
- W3211756810 hasLocation W32117568101 @default.
- W3211756810 hasLocation W32117568102 @default.
- W3211756810 hasLocation W32117568103 @default.
- W3211756810 hasOpenAccess W3211756810 @default.
- W3211756810 hasPrimaryLocation W32117568101 @default.
- W3211756810 hasRelatedWork W11665586 @default.