Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211904696> ?p ?o ?g. }
- W3211904696 endingPage "122109" @default.
- W3211904696 startingPage "122109" @default.
- W3211904696 abstract "Data-driven (DD) methods offer a promising pathway towards novel modelling solutions in fluid flow and heat transfer. In this study, we investigate the application of DD neural network (NN) methods on wall heat transfer modelling in the context of wall-modelled large-eddy simulation (WMLES) in engines, focusing on the systematic evaluation of criteria for the successful DD model generation. High-fidelity input data for model training and testing is generated by spatial filtering of DNS and wall-resolved LES fields in several engine and engine-like configurations. The NN-based models are constructed using different input data and wall-adjacent cell schemes, while cell size and network complexity are also varied. The evaluated NN-based models demonstrate improved performance with respect to classical wall functions, indicating promising potential for engineering applications. In particular, better modelling results were obtained with the inclusions of a wall-normal cell Reynolds number and of data from the second wall-normal cell. Such a two-cell input format appears to offer a good compromise between performance and complexity. Both the present NN models and literature reference approaches generally perform better in unburned regions than in burned ones. In near-wall regions with flame fronts, we present an analysis dividing samples into “unburned”, “burned”, and “flame boundary” zones exposing different characteristics and a varying degree of modelling difficulty." @default.
- W3211904696 created "2021-11-22" @default.
- W3211904696 creator A5043670916 @default.
- W3211904696 creator A5054539575 @default.
- W3211904696 creator A5063524108 @default.
- W3211904696 creator A5067615161 @default.
- W3211904696 creator A5069318927 @default.
- W3211904696 creator A5087943558 @default.
- W3211904696 creator A5090355553 @default.
- W3211904696 date "2022-02-01" @default.
- W3211904696 modified "2023-09-26" @default.
- W3211904696 title "Systematic assessment of data-driven approaches for wall heat transfer modelling for LES in IC engines using DNS data" @default.
- W3211904696 cites W1137963426 @default.
- W3211904696 cites W1532136140 @default.
- W3211904696 cites W1747777366 @default.
- W3211904696 cites W1866893013 @default.
- W3211904696 cites W1971227536 @default.
- W3211904696 cites W2029076455 @default.
- W3211904696 cites W2113108569 @default.
- W3211904696 cites W2127624257 @default.
- W3211904696 cites W2153762444 @default.
- W3211904696 cites W2178942115 @default.
- W3211904696 cites W2579193867 @default.
- W3211904696 cites W2585298970 @default.
- W3211904696 cites W2613000259 @default.
- W3211904696 cites W2613424231 @default.
- W3211904696 cites W2796443050 @default.
- W3211904696 cites W2895244164 @default.
- W3211904696 cites W2895786603 @default.
- W3211904696 cites W2899283552 @default.
- W3211904696 cites W2902987217 @default.
- W3211904696 cites W2903546100 @default.
- W3211904696 cites W2908441426 @default.
- W3211904696 cites W2920959147 @default.
- W3211904696 cites W2964513505 @default.
- W3211904696 cites W2971642421 @default.
- W3211904696 cites W2985383053 @default.
- W3211904696 cites W2994296715 @default.
- W3211904696 cites W3083825164 @default.
- W3211904696 cites W3102140816 @default.
- W3211904696 cites W3102550930 @default.
- W3211904696 cites W4307913098 @default.
- W3211904696 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2021.122109" @default.
- W3211904696 hasPublicationYear "2022" @default.
- W3211904696 type Work @default.
- W3211904696 sameAs 3211904696 @default.
- W3211904696 citedByCount "5" @default.
- W3211904696 countsByYear W32119046962022 @default.
- W3211904696 countsByYear W32119046962023 @default.
- W3211904696 crossrefType "journal-article" @default.
- W3211904696 hasAuthorship W3211904696A5043670916 @default.
- W3211904696 hasAuthorship W3211904696A5054539575 @default.
- W3211904696 hasAuthorship W3211904696A5063524108 @default.
- W3211904696 hasAuthorship W3211904696A5067615161 @default.
- W3211904696 hasAuthorship W3211904696A5069318927 @default.
- W3211904696 hasAuthorship W3211904696A5087943558 @default.
- W3211904696 hasAuthorship W3211904696A5090355553 @default.
- W3211904696 hasBestOaLocation W32119046961 @default.
- W3211904696 hasConcept C105795698 @default.
- W3211904696 hasConcept C121332964 @default.
- W3211904696 hasConcept C121448008 @default.
- W3211904696 hasConcept C127313418 @default.
- W3211904696 hasConcept C151730666 @default.
- W3211904696 hasConcept C182748727 @default.
- W3211904696 hasConcept C196558001 @default.
- W3211904696 hasConcept C2779343474 @default.
- W3211904696 hasConcept C33923547 @default.
- W3211904696 hasConcept C41008148 @default.
- W3211904696 hasConcept C50517652 @default.
- W3211904696 hasConcept C55037315 @default.
- W3211904696 hasConcept C57879066 @default.
- W3211904696 hasConceptScore W3211904696C105795698 @default.
- W3211904696 hasConceptScore W3211904696C121332964 @default.
- W3211904696 hasConceptScore W3211904696C121448008 @default.
- W3211904696 hasConceptScore W3211904696C127313418 @default.
- W3211904696 hasConceptScore W3211904696C151730666 @default.
- W3211904696 hasConceptScore W3211904696C182748727 @default.
- W3211904696 hasConceptScore W3211904696C196558001 @default.
- W3211904696 hasConceptScore W3211904696C2779343474 @default.
- W3211904696 hasConceptScore W3211904696C33923547 @default.
- W3211904696 hasConceptScore W3211904696C41008148 @default.
- W3211904696 hasConceptScore W3211904696C50517652 @default.
- W3211904696 hasConceptScore W3211904696C55037315 @default.
- W3211904696 hasConceptScore W3211904696C57879066 @default.
- W3211904696 hasLocation W32119046961 @default.
- W3211904696 hasLocation W32119046962 @default.
- W3211904696 hasOpenAccess W3211904696 @default.
- W3211904696 hasPrimaryLocation W32119046961 @default.
- W3211904696 hasRelatedWork W2015258338 @default.
- W3211904696 hasRelatedWork W2070980289 @default.
- W3211904696 hasRelatedWork W2092578740 @default.
- W3211904696 hasRelatedWork W2317774214 @default.
- W3211904696 hasRelatedWork W2348780255 @default.
- W3211904696 hasRelatedWork W2378313465 @default.
- W3211904696 hasRelatedWork W2792996206 @default.
- W3211904696 hasRelatedWork W3085118699 @default.
- W3211904696 hasRelatedWork W3141414545 @default.
- W3211904696 hasRelatedWork W4282838586 @default.