Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211907121> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3211907121 endingPage "2967" @default.
- W3211907121 startingPage "2967" @default.
- W3211907121 abstract "Abstract Introduction: SARS-CoV-2 evoked immunodysregulation drives inflammation, morbidity, and mortality across COVID-19 presentation spectrum. We sought to identify baseline cell counts and proportions reported with a complete blood count (CBC) that contribute independent information to a model predicting mortality in hospitalized patients with laboratory confirmed SARS-CoV-2 infection. Such a model may complement or improve presentation risk stratification informed by putative inflammatory markers. Methods: Our retrospective design, analyses and interpretations followed constructs detailed in the Strengthening the Reporting of Observational Studies in Epidemiology reporting guideline. Under IRB exemption, discharge medical electronic health records underwent extraction of administrative and clinical data. Demographics, anthropometrics, vital signs, laboratory test and ICD-10-CM-based Elixhauser comorbidity categories were included. Univariate logistic regression was used to identify CBC parameters and attendant ratios associated (p<.05) with hospital mortality. Generalized regression with adaptive LASSO modeling was used to evaluate explanatory probability while eliminating collinearities in identified CBC parameters (individual and ratio) associated with mortality while controlling age, sex, race, baseline vital signs, Elixhauser comorbidities and COVID-19 epoch quarters / treatment. Additional analysis with Bootstrap Forest (BF) was employed to evaluate aggregated synergies and retain parameters that optimized generalized RSquared representing multivariate prediction accuracy and explained variance proportion (EV%) in mortality provided by each variable. Further BF analysis was used to examine relative magnitude of EV% versus putative COVID-19 inflammatory markers. CBC variables included in final BF model were temporally parsed in 24h intervals then pooled when measured after 120h since first vital sign at hospitalization. Results were averaged when a patient underwent multiple assays within an interval. A two-way ANOVA was employed to compare survival vs. non-survival pathways. Results: Among patients consecutively discharged between March 14, 2020 through May 31, 2021, 208 (10 %) of 2153 died. Survivor vs. non-survivor patient and clinical characteristics are summarized in Table 1. CBC parameters identified as independently associated with hospital mortality included WBC, lymphocytes, bands, segmented neutrophils, monocytes, and RDW-CV. (Table 2) Ratios of CBC parameters associated with mortality included AMC/ALC and APC/ALC (Table 2). Results of BF EF% modeling including CBC parameters respectively without (Rsquare = 0.65) and with (Rsquare = 0.70) inclusion of putative inflammatory markers are illustrated in Figure 1a and 1b. Inflammatory markers alone exhibited lowest Rsquare (0.52) (Figure 1c). Figure 2 illustrates temporal kinetics of modeled CBC parameters across hospitalization. Intergroup differences at baseline were sustained, save for RDW-CV after 5-days. Conclusions: Machine learning approaches identified several CBC parameters measured at presentation that when modeled with putative COVID-19 inflammatory markers, enhanced early prediction of hospital mortality. CBC parameters are usually more often measured compared to other inflammatory markers that show COVID-19 severity and serve as an easily obtainable source of information to determine which patients may require a higher level of care before clinical symptoms follow. This includes progression to critical illness and hospital mortality. We recommend that CBC parameters, especially bands, APC/ALC ratio and AMC/ALC ratio be considered for baseline risk stratification of COVID-19 severity, as these trends are sustained at least 5-days after hospitalization. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare." @default.
- W3211907121 created "2021-11-22" @default.
- W3211907121 creator A5003932389 @default.
- W3211907121 creator A5005836249 @default.
- W3211907121 creator A5021896623 @default.
- W3211907121 creator A5051216229 @default.
- W3211907121 creator A5060839577 @default.
- W3211907121 creator A5069281661 @default.
- W3211907121 date "2021-11-05" @default.
- W3211907121 modified "2023-09-26" @default.
- W3211907121 title "Complete Blood Count Parameters Outperform Putative Inflammatory Markers in Predicting COVID-19 Mortality: A Multimodal Machine Learning Model" @default.
- W3211907121 doi "https://doi.org/10.1182/blood-2021-151849" @default.
- W3211907121 hasPublicationYear "2021" @default.
- W3211907121 type Work @default.
- W3211907121 sameAs 3211907121 @default.
- W3211907121 citedByCount "0" @default.
- W3211907121 crossrefType "journal-article" @default.
- W3211907121 hasAuthorship W3211907121A5003932389 @default.
- W3211907121 hasAuthorship W3211907121A5005836249 @default.
- W3211907121 hasAuthorship W3211907121A5021896623 @default.
- W3211907121 hasAuthorship W3211907121A5051216229 @default.
- W3211907121 hasAuthorship W3211907121A5060839577 @default.
- W3211907121 hasAuthorship W3211907121A5069281661 @default.
- W3211907121 hasBestOaLocation W32119071211 @default.
- W3211907121 hasConcept C126322002 @default.
- W3211907121 hasConcept C141071460 @default.
- W3211907121 hasConcept C144301174 @default.
- W3211907121 hasConcept C151956035 @default.
- W3211907121 hasConcept C194828623 @default.
- W3211907121 hasConcept C2776376844 @default.
- W3211907121 hasConcept C2776890885 @default.
- W3211907121 hasConcept C2777063308 @default.
- W3211907121 hasConcept C2779159551 @default.
- W3211907121 hasConcept C29730261 @default.
- W3211907121 hasConcept C38180746 @default.
- W3211907121 hasConcept C71924100 @default.
- W3211907121 hasConcept C74133956 @default.
- W3211907121 hasConceptScore W3211907121C126322002 @default.
- W3211907121 hasConceptScore W3211907121C141071460 @default.
- W3211907121 hasConceptScore W3211907121C144301174 @default.
- W3211907121 hasConceptScore W3211907121C151956035 @default.
- W3211907121 hasConceptScore W3211907121C194828623 @default.
- W3211907121 hasConceptScore W3211907121C2776376844 @default.
- W3211907121 hasConceptScore W3211907121C2776890885 @default.
- W3211907121 hasConceptScore W3211907121C2777063308 @default.
- W3211907121 hasConceptScore W3211907121C2779159551 @default.
- W3211907121 hasConceptScore W3211907121C29730261 @default.
- W3211907121 hasConceptScore W3211907121C38180746 @default.
- W3211907121 hasConceptScore W3211907121C71924100 @default.
- W3211907121 hasConceptScore W3211907121C74133956 @default.
- W3211907121 hasIssue "Supplement 1" @default.
- W3211907121 hasLocation W32119071211 @default.
- W3211907121 hasLocation W32119071212 @default.
- W3211907121 hasOpenAccess W3211907121 @default.
- W3211907121 hasPrimaryLocation W32119071211 @default.
- W3211907121 hasRelatedWork W1965380216 @default.
- W3211907121 hasRelatedWork W2085319091 @default.
- W3211907121 hasRelatedWork W2349419009 @default.
- W3211907121 hasRelatedWork W2357093922 @default.
- W3211907121 hasRelatedWork W2389082831 @default.
- W3211907121 hasRelatedWork W2433173650 @default.
- W3211907121 hasRelatedWork W2616895797 @default.
- W3211907121 hasRelatedWork W3014125012 @default.
- W3211907121 hasRelatedWork W4321613341 @default.
- W3211907121 hasRelatedWork W2190010524 @default.
- W3211907121 hasVolume "138" @default.
- W3211907121 isParatext "false" @default.
- W3211907121 isRetracted "false" @default.
- W3211907121 magId "3211907121" @default.
- W3211907121 workType "article" @default.