Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211965532> ?p ?o ?g. }
- W3211965532 abstract "High-level synthesis (HLS) has freed the computer architects from developing their designs in a very low-level language and needing to exactly specify how the data should be transferred in register-level. With the help of HLS, the hardware designers must describe only a high-level behavioral flow of the design. Despite this, it still can take weeks to develop a high-performance architecture mainly because there are many design choices at a higher level that requires more time to explore. It also takes several minutes to hours to get feedback from the HLS tool on the quality of each design candidate. In this paper, we propose to solve this problem by modeling the HLS tool with a graph neural network (GNN) that is trained to be used for a wide range of applications. The experimental results demonstrate that by employing the GNN-based model, we are able to estimate the quality of design in milliseconds with high accuracy which can help us search through the solution space very quickly." @default.
- W3211965532 created "2021-11-22" @default.
- W3211965532 creator A5016776689 @default.
- W3211965532 creator A5021611426 @default.
- W3211965532 creator A5025213473 @default.
- W3211965532 creator A5039319411 @default.
- W3211965532 date "2021-11-17" @default.
- W3211965532 modified "2023-09-27" @default.
- W3211965532 title "GNN-DSE: Automated Accelerator Optimization Aided by Graph Neural Networks" @default.
- W3211965532 cites W1988888548 @default.
- W3211965532 cites W2012114780 @default.
- W3211965532 cites W2125910575 @default.
- W3211965532 cites W2132729131 @default.
- W3211965532 cites W2133156997 @default.
- W3211965532 cites W2138209363 @default.
- W3211965532 cites W2153185479 @default.
- W3211965532 cites W2166029537 @default.
- W3211965532 cites W2187089797 @default.
- W3211965532 cites W2191327475 @default.
- W3211965532 cites W2331272331 @default.
- W3211965532 cites W2345438070 @default.
- W3211965532 cites W2398354748 @default.
- W3211965532 cites W2481351383 @default.
- W3211965532 cites W2619340758 @default.
- W3211965532 cites W2626778328 @default.
- W3211965532 cites W2774970068 @default.
- W3211965532 cites W2808879374 @default.
- W3211965532 cites W2809170821 @default.
- W3211965532 cites W2896457183 @default.
- W3211965532 cites W2899691047 @default.
- W3211965532 cites W2906737788 @default.
- W3211965532 cites W2950898568 @default.
- W3211965532 cites W2963300178 @default.
- W3211965532 cites W2963858333 @default.
- W3211965532 cites W2964015378 @default.
- W3211965532 cites W2970971581 @default.
- W3211965532 cites W2975468520 @default.
- W3211965532 cites W2977707586 @default.
- W3211965532 cites W3000140877 @default.
- W3211965532 cites W3006559397 @default.
- W3211965532 cites W3008730548 @default.
- W3211965532 cites W3012249773 @default.
- W3211965532 cites W3015271291 @default.
- W3211965532 cites W3090389586 @default.
- W3211965532 cites W3101493857 @default.
- W3211965532 cites W3107652887 @default.
- W3211965532 cites W3112616759 @default.
- W3211965532 cites W3123909522 @default.
- W3211965532 cites W3130920634 @default.
- W3211965532 cites W3130978758 @default.
- W3211965532 cites W3168189449 @default.
- W3211965532 hasPublicationYear "2021" @default.
- W3211965532 type Work @default.
- W3211965532 sameAs 3211965532 @default.
- W3211965532 citedByCount "0" @default.
- W3211965532 crossrefType "posted-content" @default.
- W3211965532 hasAuthorship W3211965532A5016776689 @default.
- W3211965532 hasAuthorship W3211965532A5021611426 @default.
- W3211965532 hasAuthorship W3211965532A5025213473 @default.
- W3211965532 hasAuthorship W3211965532A5039319411 @default.
- W3211965532 hasConcept C113775141 @default.
- W3211965532 hasConcept C118524514 @default.
- W3211965532 hasConcept C123657996 @default.
- W3211965532 hasConcept C127413603 @default.
- W3211965532 hasConcept C132525143 @default.
- W3211965532 hasConcept C142362112 @default.
- W3211965532 hasConcept C146978453 @default.
- W3211965532 hasConcept C149635348 @default.
- W3211965532 hasConcept C153349607 @default.
- W3211965532 hasConcept C154945302 @default.
- W3211965532 hasConcept C204323151 @default.
- W3211965532 hasConcept C2776221188 @default.
- W3211965532 hasConcept C37135326 @default.
- W3211965532 hasConcept C41008148 @default.
- W3211965532 hasConcept C42935608 @default.
- W3211965532 hasConcept C489000 @default.
- W3211965532 hasConcept C50644808 @default.
- W3211965532 hasConcept C58013763 @default.
- W3211965532 hasConcept C77088390 @default.
- W3211965532 hasConcept C80444323 @default.
- W3211965532 hasConcept C88468194 @default.
- W3211965532 hasConceptScore W3211965532C113775141 @default.
- W3211965532 hasConceptScore W3211965532C118524514 @default.
- W3211965532 hasConceptScore W3211965532C123657996 @default.
- W3211965532 hasConceptScore W3211965532C127413603 @default.
- W3211965532 hasConceptScore W3211965532C132525143 @default.
- W3211965532 hasConceptScore W3211965532C142362112 @default.
- W3211965532 hasConceptScore W3211965532C146978453 @default.
- W3211965532 hasConceptScore W3211965532C149635348 @default.
- W3211965532 hasConceptScore W3211965532C153349607 @default.
- W3211965532 hasConceptScore W3211965532C154945302 @default.
- W3211965532 hasConceptScore W3211965532C204323151 @default.
- W3211965532 hasConceptScore W3211965532C2776221188 @default.
- W3211965532 hasConceptScore W3211965532C37135326 @default.
- W3211965532 hasConceptScore W3211965532C41008148 @default.
- W3211965532 hasConceptScore W3211965532C42935608 @default.
- W3211965532 hasConceptScore W3211965532C489000 @default.
- W3211965532 hasConceptScore W3211965532C50644808 @default.
- W3211965532 hasConceptScore W3211965532C58013763 @default.
- W3211965532 hasConceptScore W3211965532C77088390 @default.