Matches in SemOpenAlex for { <https://semopenalex.org/work/W3211967874> ?p ?o ?g. }
- W3211967874 abstract "With the increasingly obvious restriction of the ecological environment on economic development, environmental regulations are widely used to achieve “green production,” that is, to improve green total factor productivity (GTFP). First, through the econometric model, it can be concluded that command-based environmental regulations could improve GTFP, while market-based environmental regulations have no significant impact on GTFP. Unlike traditional econometric models, machine learning has no specific data requirements and research assumptions. We use Lasso regression to verify the above results by obtaining the optimal tuning parameter. Furthermore, considering that the leap of China’s economy is inseparable from foreign direct investment (FDI), we use FDI as a threshold variable. The threshold model results showe that when the intensity of FDI in China ranges between 1.2492 and 1.588, both types of environmental regulations can significantly promote GTFP. These conclusions passed the robustness test. Given the differences in economy and resource endowment among different regions in China, a regional heterogeneity test is conducted. The results show that the current environmental regulations in eastern and central China have no significant impact on GTFP. However, when the intensity of FDI in central China is greater than 3.6868, environmental regulations have a significant promoting effect on GTFP. In western China, when FDI intensity ranges between 1.3950 and 1.5880, market-based environmental regulations can significantly promote GTFP. Further, the path test of the mediation effect model reveals that command-based environmental regulations reduce GTFP by reducing FDI. The above conclusions provide empirical data for the intensity of FDI in different regions of China to improve GTFP." @default.
- W3211967874 created "2021-11-22" @default.
- W3211967874 creator A5007260136 @default.
- W3211967874 creator A5027213805 @default.
- W3211967874 creator A5038388552 @default.
- W3211967874 date "2021-11-18" @default.
- W3211967874 modified "2023-09-30" @default.
- W3211967874 title "Exposing the Effects of Environmental Regulations on China’s Green Total Factor Productivity: Results From Econometrics Analysis and Machine Learning Methods" @default.
- W3211967874 cites W1975299761 @default.
- W3211967874 cites W1993273815 @default.
- W3211967874 cites W2026601075 @default.
- W3211967874 cites W2054190365 @default.
- W3211967874 cites W2070011895 @default.
- W3211967874 cites W2076818111 @default.
- W3211967874 cites W2078635353 @default.
- W3211967874 cites W2092826852 @default.
- W3211967874 cites W2131568786 @default.
- W3211967874 cites W2135046866 @default.
- W3211967874 cites W2154868889 @default.
- W3211967874 cites W2167125755 @default.
- W3211967874 cites W2183355436 @default.
- W3211967874 cites W2284729062 @default.
- W3211967874 cites W2499678836 @default.
- W3211967874 cites W2579465658 @default.
- W3211967874 cites W2609986053 @default.
- W3211967874 cites W2614987896 @default.
- W3211967874 cites W2804905961 @default.
- W3211967874 cites W2913733713 @default.
- W3211967874 cites W2937098378 @default.
- W3211967874 cites W3000983279 @default.
- W3211967874 cites W3012181427 @default.
- W3211967874 cites W3016951063 @default.
- W3211967874 cites W3023235227 @default.
- W3211967874 cites W3025774319 @default.
- W3211967874 cites W3033032432 @default.
- W3211967874 cites W3036715260 @default.
- W3211967874 cites W3036969569 @default.
- W3211967874 cites W3082021424 @default.
- W3211967874 cites W3091283790 @default.
- W3211967874 cites W3098594976 @default.
- W3211967874 cites W3102461524 @default.
- W3211967874 cites W3105340263 @default.
- W3211967874 cites W3105674549 @default.
- W3211967874 cites W3112557550 @default.
- W3211967874 cites W3119749673 @default.
- W3211967874 cites W3121459315 @default.
- W3211967874 cites W3122216070 @default.
- W3211967874 cites W3135668414 @default.
- W3211967874 cites W3154740180 @default.
- W3211967874 cites W3156196672 @default.
- W3211967874 cites W3159725959 @default.
- W3211967874 cites W3178640656 @default.
- W3211967874 cites W3179622846 @default.
- W3211967874 cites W3195213791 @default.
- W3211967874 cites W4292811746 @default.
- W3211967874 doi "https://doi.org/10.3389/fenvs.2021.779358" @default.
- W3211967874 hasPublicationYear "2021" @default.
- W3211967874 type Work @default.
- W3211967874 sameAs 3211967874 @default.
- W3211967874 citedByCount "4" @default.
- W3211967874 countsByYear W32119678742022 @default.
- W3211967874 countsByYear W32119678742023 @default.
- W3211967874 crossrefType "journal-article" @default.
- W3211967874 hasAuthorship W3211967874A5007260136 @default.
- W3211967874 hasAuthorship W3211967874A5027213805 @default.
- W3211967874 hasAuthorship W3211967874A5038388552 @default.
- W3211967874 hasBestOaLocation W32119678741 @default.
- W3211967874 hasConcept C120009192 @default.
- W3211967874 hasConcept C134560507 @default.
- W3211967874 hasConcept C139719470 @default.
- W3211967874 hasConcept C149782125 @default.
- W3211967874 hasConcept C162324750 @default.
- W3211967874 hasConcept C166957645 @default.
- W3211967874 hasConcept C175605778 @default.
- W3211967874 hasConcept C180075932 @default.
- W3211967874 hasConcept C191935318 @default.
- W3211967874 hasConcept C204983608 @default.
- W3211967874 hasConcept C205649164 @default.
- W3211967874 hasConcept C2776138137 @default.
- W3211967874 hasConcept C33842695 @default.
- W3211967874 hasConceptScore W3211967874C120009192 @default.
- W3211967874 hasConceptScore W3211967874C134560507 @default.
- W3211967874 hasConceptScore W3211967874C139719470 @default.
- W3211967874 hasConceptScore W3211967874C149782125 @default.
- W3211967874 hasConceptScore W3211967874C162324750 @default.
- W3211967874 hasConceptScore W3211967874C166957645 @default.
- W3211967874 hasConceptScore W3211967874C175605778 @default.
- W3211967874 hasConceptScore W3211967874C180075932 @default.
- W3211967874 hasConceptScore W3211967874C191935318 @default.
- W3211967874 hasConceptScore W3211967874C204983608 @default.
- W3211967874 hasConceptScore W3211967874C205649164 @default.
- W3211967874 hasConceptScore W3211967874C2776138137 @default.
- W3211967874 hasConceptScore W3211967874C33842695 @default.
- W3211967874 hasFunder F4320321001 @default.
- W3211967874 hasFunder F4320322843 @default.
- W3211967874 hasFunder F4320326217 @default.
- W3211967874 hasFunder F4320333642 @default.
- W3211967874 hasLocation W32119678741 @default.
- W3211967874 hasLocation W32119678742 @default.
- W3211967874 hasOpenAccess W3211967874 @default.