Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212006298> ?p ?o ?g. }
- W3212006298 endingPage "12034" @default.
- W3212006298 startingPage "12022" @default.
- W3212006298 abstract "Deep learning and traditional machine learning algorithms have been widely applied to enhance the classification accuracy in remote sensing images. However, due to the variety and changeability of buildings, identifying building rooftops based on remote sensing images is still a challenge. Taking advantage of hyperspectral remote sensing imagery and spectroscopy, we propose a deep Convolutional Neural Networks (CNN) approach with Pure Pixel Index (PPI) constraints, named CNNP, to identify building rooftops materials. The framework, which accepts two kinds of data cubes as input data, extract spectral and spatial information by using 1D CNN and 3D CNNs with different kernel size, respectively. After the feature extraction, aiming to identify different building materials, the output of the top layer is the input to a classifier in a ratio decided upon by the PPI of the central pixel. To verify the effectiveness, we use Hyperion and Push-broom Hyperspectral Imager (PHI) data sets that represent high and low spatial resolution images to compare our proposed method with other traditional remote sensing image classification approaches, such as: Support Vector Machine (SVM); Stacked Auto-Encoders (SAE); Deep Belief Network (DBN); 1D CNN; and 2D CNN; 3D CNN; MiniGCN. The quantitative and qualitative results show that compared to other representative methods, CNNP achieves better performance, for both kinds of data, on Hyperion and PHI data sets with Overall Accuracy (OA) of 98.83% and 99.82%, respectively. And, the proposed method also provides an innovative idea for constructing other frameworks of hyperspectral image classification" @default.
- W3212006298 created "2021-11-22" @default.
- W3212006298 creator A5007144110 @default.
- W3212006298 creator A5014961194 @default.
- W3212006298 creator A5017880637 @default.
- W3212006298 creator A5051020422 @default.
- W3212006298 creator A5071340024 @default.
- W3212006298 creator A5076076111 @default.
- W3212006298 date "2021-01-01" @default.
- W3212006298 modified "2023-09-23" @default.
- W3212006298 title "Identifying Building Rooftops in Hyperspectral Imagery Using CNN With Pure Pixel Index" @default.
- W3212006298 cites W1277711400 @default.
- W3212006298 cites W1963659868 @default.
- W3212006298 cites W1977066218 @default.
- W3212006298 cites W2000221675 @default.
- W3212006298 cites W2012425702 @default.
- W3212006298 cites W2021936090 @default.
- W3212006298 cites W2029316659 @default.
- W3212006298 cites W2036389990 @default.
- W3212006298 cites W2063907334 @default.
- W3212006298 cites W2073786624 @default.
- W3212006298 cites W2082291024 @default.
- W3212006298 cites W2083022762 @default.
- W3212006298 cites W2083863337 @default.
- W3212006298 cites W2090424610 @default.
- W3212006298 cites W2090976648 @default.
- W3212006298 cites W2113464037 @default.
- W3212006298 cites W2120317131 @default.
- W3212006298 cites W2134337515 @default.
- W3212006298 cites W2136625467 @default.
- W3212006298 cites W2145116938 @default.
- W3212006298 cites W2145554279 @default.
- W3212006298 cites W2155632266 @default.
- W3212006298 cites W2165755981 @default.
- W3212006298 cites W2176673053 @default.
- W3212006298 cites W2194775991 @default.
- W3212006298 cites W2213640936 @default.
- W3212006298 cites W2218047931 @default.
- W3212006298 cites W2303172903 @default.
- W3212006298 cites W2476058499 @default.
- W3212006298 cites W2500751094 @default.
- W3212006298 cites W2518575800 @default.
- W3212006298 cites W2536430694 @default.
- W3212006298 cites W2546302380 @default.
- W3212006298 cites W2648242067 @default.
- W3212006298 cites W2757208835 @default.
- W3212006298 cites W2764276316 @default.
- W3212006298 cites W2766666090 @default.
- W3212006298 cites W2772452219 @default.
- W3212006298 cites W2782522152 @default.
- W3212006298 cites W2789643644 @default.
- W3212006298 cites W2789781087 @default.
- W3212006298 cites W2791193134 @default.
- W3212006298 cites W2792332881 @default.
- W3212006298 cites W2794531502 @default.
- W3212006298 cites W2801421380 @default.
- W3212006298 cites W2803946774 @default.
- W3212006298 cites W2805177060 @default.
- W3212006298 cites W2806437580 @default.
- W3212006298 cites W2806966882 @default.
- W3212006298 cites W2809113079 @default.
- W3212006298 cites W2811009023 @default.
- W3212006298 cites W2830896905 @default.
- W3212006298 cites W2883654325 @default.
- W3212006298 cites W2887697063 @default.
- W3212006298 cites W2900147932 @default.
- W3212006298 cites W2912951200 @default.
- W3212006298 cites W2946157314 @default.
- W3212006298 cites W2963525222 @default.
- W3212006298 cites W3023114228 @default.
- W3212006298 cites W3047443805 @default.
- W3212006298 cites W3100321043 @default.
- W3212006298 cites W3172304795 @default.
- W3212006298 cites W4233760599 @default.
- W3212006298 doi "https://doi.org/10.1109/jstars.2021.3127728" @default.
- W3212006298 hasPublicationYear "2021" @default.
- W3212006298 type Work @default.
- W3212006298 sameAs 3212006298 @default.
- W3212006298 citedByCount "1" @default.
- W3212006298 countsByYear W32120062982023 @default.
- W3212006298 crossrefType "journal-article" @default.
- W3212006298 hasAuthorship W3212006298A5007144110 @default.
- W3212006298 hasAuthorship W3212006298A5014961194 @default.
- W3212006298 hasAuthorship W3212006298A5017880637 @default.
- W3212006298 hasAuthorship W3212006298A5051020422 @default.
- W3212006298 hasAuthorship W3212006298A5071340024 @default.
- W3212006298 hasAuthorship W3212006298A5076076111 @default.
- W3212006298 hasBestOaLocation W32120062981 @default.
- W3212006298 hasConcept C108583219 @default.
- W3212006298 hasConcept C12267149 @default.
- W3212006298 hasConcept C153180895 @default.
- W3212006298 hasConcept C154945302 @default.
- W3212006298 hasConcept C159078339 @default.
- W3212006298 hasConcept C160633673 @default.
- W3212006298 hasConcept C205649164 @default.
- W3212006298 hasConcept C31972630 @default.
- W3212006298 hasConcept C41008148 @default.
- W3212006298 hasConcept C52622490 @default.