Matches in SemOpenAlex for { <https://semopenalex.org/work/W3212075174> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3212075174 endingPage "164" @default.
- W3212075174 startingPage "144" @default.
- W3212075174 abstract "Purpose Chronic diseases are considered as one of the serious concerns and threats to public health across the globe. Diseases such as chronic diabetes mellitus (CDM), cardio vasculardisease (CVD) and chronic kidney disease (CKD) are major chronic diseases responsible for millions of death. Each of these diseases is considered as a risk factor for the other two diseases. Therefore, noteworthy attention is being paid to reduce the risk of these diseases. A gigantic amount of medical data is generated in digital form from smart healthcare appliances in the current era. Although numerous machine learning (ML) algorithms are proposed for the early prediction of chronic diseases, these algorithmic models are neither generalized nor adaptive when the model is imposed on new disease datasets. Hence, these algorithms have to process a huge amount of disease data iteratively until the model converges. This limitation may make it difficult for ML models to fit and produce imprecise results. A single algorithm may not yield accurate results. Nonetheless, an ensemble of classifiers built from multiple models, that works based on a voting principle has been successfully applied to solve many classification tasks. The purpose of this paper is to make early prediction of chronic diseases using hybrid generative regression based deep intelligence network (HGRDIN) model. Design/methodology/approach In the proposed paper generative regression (GR) model is used in combination with deep neural network (DNN) for the early prediction of chronic disease. The GR model will obtain prior knowledge about the labelled data by analyzing the correlation between features and class labels. Hence, the weight assignment process of DNN is influenced by the relationship between attributes rather than random assignment. The knowledge obtained through these processes is passed as input to the DNN network for further prediction. Since the inference about the input data instances is drawn at the DNN through the GR model, the model is named as hybrid generative regression-based deep intelligence network (HGRDIN). Findings The credibility of the implemented approach is rigorously validated using various parameters such as accuracy, precision, recall, F score and area under the curve (AUC) score. During the training phase, the proposed algorithm is constantly regularized using the elastic net regularization technique and also hyper-tuned using the various parameters such as momentum and learning rate to minimize the misprediction rate. The experimental results illustrate that the proposed approach predicted the chronic disease with a minimal error by avoiding the possible overfitting and local minima problems. The result obtained with the proposed approach is also compared with the various traditional approaches. Research limitations/implications Usually, the diagnostic data are multi-dimension in nature where the performance of the ML algorithm will degrade due to the data overfitting, curse of dimensionality issues. The result obtained through the experiment has achieved an average accuracy of 95%. Hence, analysis can be made further to improve predictive accuracy by overcoming the curse of dimensionality issues. Practical implications The proposed ML model can mimic the behavior of the doctor's brain. These algorithms have the capability to replace clinical tasks. The accurate result obtained through the innovative algorithms can free the physician from the mundane care and practices so that the physician can focus more on the complex issues. Social implications Utilizing the proposed predictive model at the decision-making level for the early prediction of the disease is considered as a promising change towards the healthcare sector. The global burden of chronic disease can be reduced at an exceptional level through these approaches. Originality/value In the proposed HGRDIN model, the concept of transfer learning approach is used where the knowledge acquired through the GR process is applied on DNN that identified the possible relationship between the dependent and independent feature variables by mapping the chronic data instances to its corresponding target class before it is being passed as input to the DNN network. Hence, the result of the experiments illustrated that the proposed approach obtained superior performance in terms of various validation parameters than the existing conventional techniques." @default.
- W3212075174 created "2021-11-22" @default.
- W3212075174 creator A5004376448 @default.
- W3212075174 creator A5029896296 @default.
- W3212075174 date "2021-11-11" @default.
- W3212075174 modified "2023-09-26" @default.
- W3212075174 title "Hybrid generative regression-based deep intelligence to predict the risk of chronic disease" @default.
- W3212075174 cites W2907312980 @default.
- W3212075174 cites W2909097067 @default.
- W3212075174 cites W2920805549 @default.
- W3212075174 cites W2942796683 @default.
- W3212075174 cites W2952718378 @default.
- W3212075174 cites W2967217046 @default.
- W3212075174 cites W2970369943 @default.
- W3212075174 cites W2971316469 @default.
- W3212075174 cites W2972160585 @default.
- W3212075174 cites W2978484237 @default.
- W3212075174 cites W2982215737 @default.
- W3212075174 cites W2982494647 @default.
- W3212075174 cites W2991396920 @default.
- W3212075174 cites W2992685027 @default.
- W3212075174 cites W2996167815 @default.
- W3212075174 cites W2997919088 @default.
- W3212075174 cites W2998901749 @default.
- W3212075174 cites W2999494435 @default.
- W3212075174 cites W3005957464 @default.
- W3212075174 cites W3011093391 @default.
- W3212075174 cites W3014522558 @default.
- W3212075174 cites W3015972374 @default.
- W3212075174 cites W3034654929 @default.
- W3212075174 cites W3038010422 @default.
- W3212075174 doi "https://doi.org/10.1108/ijicc-06-2021-0103" @default.
- W3212075174 hasPublicationYear "2021" @default.
- W3212075174 type Work @default.
- W3212075174 sameAs 3212075174 @default.
- W3212075174 citedByCount "1" @default.
- W3212075174 countsByYear W32120751742022 @default.
- W3212075174 crossrefType "journal-article" @default.
- W3212075174 hasAuthorship W3212075174A5004376448 @default.
- W3212075174 hasAuthorship W3212075174A5029896296 @default.
- W3212075174 hasConcept C105795698 @default.
- W3212075174 hasConcept C108583219 @default.
- W3212075174 hasConcept C111919701 @default.
- W3212075174 hasConcept C119857082 @default.
- W3212075174 hasConcept C124101348 @default.
- W3212075174 hasConcept C126322002 @default.
- W3212075174 hasConcept C142724271 @default.
- W3212075174 hasConcept C154945302 @default.
- W3212075174 hasConcept C177713679 @default.
- W3212075174 hasConcept C2778653478 @default.
- W3212075174 hasConcept C2779134260 @default.
- W3212075174 hasConcept C2987552334 @default.
- W3212075174 hasConcept C33923547 @default.
- W3212075174 hasConcept C41008148 @default.
- W3212075174 hasConcept C50644808 @default.
- W3212075174 hasConcept C71924100 @default.
- W3212075174 hasConcept C75684735 @default.
- W3212075174 hasConcept C83546350 @default.
- W3212075174 hasConcept C98045186 @default.
- W3212075174 hasConceptScore W3212075174C105795698 @default.
- W3212075174 hasConceptScore W3212075174C108583219 @default.
- W3212075174 hasConceptScore W3212075174C111919701 @default.
- W3212075174 hasConceptScore W3212075174C119857082 @default.
- W3212075174 hasConceptScore W3212075174C124101348 @default.
- W3212075174 hasConceptScore W3212075174C126322002 @default.
- W3212075174 hasConceptScore W3212075174C142724271 @default.
- W3212075174 hasConceptScore W3212075174C154945302 @default.
- W3212075174 hasConceptScore W3212075174C177713679 @default.
- W3212075174 hasConceptScore W3212075174C2778653478 @default.
- W3212075174 hasConceptScore W3212075174C2779134260 @default.
- W3212075174 hasConceptScore W3212075174C2987552334 @default.
- W3212075174 hasConceptScore W3212075174C33923547 @default.
- W3212075174 hasConceptScore W3212075174C41008148 @default.
- W3212075174 hasConceptScore W3212075174C50644808 @default.
- W3212075174 hasConceptScore W3212075174C71924100 @default.
- W3212075174 hasConceptScore W3212075174C75684735 @default.
- W3212075174 hasConceptScore W3212075174C83546350 @default.
- W3212075174 hasConceptScore W3212075174C98045186 @default.
- W3212075174 hasIssue "1" @default.
- W3212075174 hasLocation W32120751741 @default.
- W3212075174 hasOpenAccess W3212075174 @default.
- W3212075174 hasPrimaryLocation W32120751741 @default.
- W3212075174 hasRelatedWork W2922457425 @default.
- W3212075174 hasRelatedWork W3009238340 @default.
- W3212075174 hasRelatedWork W3014300295 @default.
- W3212075174 hasRelatedWork W3124051732 @default.
- W3212075174 hasRelatedWork W3164822677 @default.
- W3212075174 hasRelatedWork W3215138031 @default.
- W3212075174 hasRelatedWork W4210805261 @default.
- W3212075174 hasRelatedWork W4223943233 @default.
- W3212075174 hasRelatedWork W4250304930 @default.
- W3212075174 hasRelatedWork W4299487748 @default.
- W3212075174 hasVolume "15" @default.
- W3212075174 isParatext "false" @default.
- W3212075174 isRetracted "false" @default.
- W3212075174 magId "3212075174" @default.
- W3212075174 workType "article" @default.